
Improving the FreeBSD SMP implementation

Greg Lehey
IBM LTC Ozlabs

grog@FreeBSD.org
grog@au1.ibm.com

ABSTRACT

UNIX-derived operating systems have traditionally have a simplistic approach to process
synchronization which is unsuited to multiprocessor application. Initial FreeBSD SMP
support kept this approach by allowing only one process to run in kernel mode at any
time, and also blocked interrupts across multiple processors, causing seriously suboptimal
performance of I/O bound systems. This paper describes work done to remove this bot-
tleneck, replacing it with fine-grained locking. It derives from work done on BSD/OS
and has many similarities with the approach taken in SunOS 5. Synchronization is per-
formed primarily by a locking construct intermediate between a spin lock and a binary
semaphore, termed mutexes. In general, mutexes attempt to block rather than to spin in
cases where the likely wait time is long enough to warrant a process switch. The issue of
blocking interrupt handlers is addressed by attaching a process context to the interrupt
handlers. Despite this process context, an interrupt handler normally runs in the context
of the interrupted process and is scheduled only when blocking is required.

Introduction

A crucial issue in the design of an operating sys-
tem is the manner in which it shares resources
such as memory, data structures and processor
time. In the UNIX model, the main clients for re-
sources are processes and interrupt handlers. In-
terrupt handlers operate completely in kernel
space, primarily on behalf of the system. Pro-
cesses normally run in one of two different
modes, user mode and kernel mode. User mode
code is the code of the program from which the
process is derived, and kernel mode code is part
of the kernel. This structure gives rise to multiple
potential conflicts.

Use of processor time

The most obvious demand a process or interrupt
routine places on the system is that it wants to
run: it must execute instructions. In traditional
UNIX, the rules governing this sharing are:

• There is only one processor. All code runs on
it.

• If both an interrupt handler and a process are
available to run, the interrupt handler runs.

• Interrupt handlers have different priorities. If
one interrupt handler is running and one with
a higher priority becomes runnable, the higher
priority interrupt immediately preempts the
lower priority interrupt.

• The scheduler runs when a process voluntari-
ly relinquishes the processor, its time slice ex-
pires, or a higher-priority process becomes
runnable. The scheduler chooses the highest
priority process which is ready to run.

• If the process is in kernel mode when its time
slice expires or a higher priority process be-
comes runnable, the system waits until it re-
turns to user mode or sleeps before running
the scheduler.

This method works acceptably for the single pro-
cessor machines for which it was designed. In the
following section, we’ll see the reasoning behind

the last decision.

Kernel data objects

The most obvious problem is access to memory.
Modern UNIX systems run with memory protec-
tion, which prevents processes in user mode from
accessing the address space of other processes.
This protection no longer applies in kernel mode:
all processes share the kernel address space, and
they need to access data shared between all pro-
cesses. For example, the fork() system call
needs to allocate a proc structure for the new
process. The file sys/kern_fork.c contains the fol-
lowing code:

int
fork1(p1, flags, procp)

struct proc *p1;
int flags;
struct proc **procp;

{
struct proc *p2, *pptr;

...
/* Allocate new proc. */
newproc = zalloc(proc_zone);

The function zalloc takes a struct proc
entry off a freelist and returns its address:

item = z->zitems;
z->zitems = ((void **) item)[0];

...
return item;

What happens if the currently executing process is
interrupted exactly between the first two lines of
the code above, maybe because a higher priority
process wants to run? item contains the pointer
to the process structure, but z->z_items still
points to it. If the interrupting code also allocates
a process structure, it will go through the same
code and return a pointer to the same memory
area, creating the process equivalent of Siamese
twins.

UNIX solves this issue with the rule ‘‘The UNIX
kernel is non-preemptive’’. This means that when
a process is running in kernel mode, no other pro-
cess can execute kernel code until the first process
relinquishes the kernel voluntarily, either by re-
turning to user mode, or by sleeping.

Synchronizing processes and inter-
rupts

The non-preemption rule only applies to process-
es. Interrupts happen independently of process
context, so a different method is needed. In de-

vice drivers, the process context (‘‘top half’’) and
the interrupt context (‘‘bottom half’’) must share
data. Two separate issues arise here: each half
must ensure that any changes to shared data struc-
tures occur in a consistent manner, and they must
find a way to synchronize with each other.

Protection

Each half must protect its data against change by
the other half. For example, the buffer header
structure contains a flags word with 32 flags,
some set and reset by both halves. Setting and re-
setting bits requires multiple instructions on most
architectures, so the potential for data corruption
exists. UNIX solves this problem by locking out
interrupts during critical sections. Top half code
must explicitly lock out interrupts with the spl
functions.1 One of the most significant sources of
bugs in drivers is inadequate synchronization with
the bottom half.

Interrupt code does not need to perform any spe-
cial synchronization: by definition, processes
don’t run when interrupt code is active.

Blocking interrupts has a potential danger that an
interrupt will not be serviced in a timely fashion.
On PC hardware, this is particularly evident with
serial I/O, which frequently generates an interrupt
for every character. At 115200 bps, this equates
to an interrupt every 85 µs. In the past, this has
given rise to the dreaded silo overflows; even on
fast modern hardware it can be a problem. It’s al-
so not easy to decide interrupt priorities: in the
early days, disk I/O was given a high priority in
order to avoid overruns, while serial I/O had a low
priority. Now adays disk controllers can handle
transfers by themselves, but overruns are still a
problem with serial I/O.

Waiting for the other half

In other cases, a process will need to wait for
some event to complete. The most obvious exam-
ple is I/O: a process issues an I/O request, and the
driver initiates the transfer. It can be a long time
before the transfer completes: if it’s reading

1. The naming goes back to the early days of UNIX on the PDP-11.
The PDP-11 had a relatively simplistic level-based interrupt
structure. When running at a specific level, only higher priority
interrupts were allowed. UNIX named functions for setting the
interrupt priority level after the PDP-11 SPL instruction, so initially
the functions had names like spl4 and spl7. Later machines
came out with interrupt masks, and BSD changed the names to
more descriptive names such as splbio (for block I/O) and
splhigh (block out all interrupts).

keyboard input, for example, it could be weeks
before the I/O completes. When the transfer com-
pletes, it causes an interrupt, so it’s the interrupt
handler which finally determines that the transfer
is complete and notifies the process. Traditional
UNIX performs this synchronization with the
functions sleep and wakeup, though current
BSD no longer uses sleep: it has been replaced
with tsleep, which offers additional functional-
ity.

The top half of a driver calls sleep or tsleep
when it wants to wait for an event, and the bottom
half calls wakeup when the event occurs. In
more detail,

• The process issues a system call read, which
brings it into kernel mode.

• read locates the driver for the device and
calls it to initiate a transfer.

• read next calls tsleep, passing it the ad-
dress of some unique object related to the re-
quest. tsleep stores the address in the proc
structure, marks the process as sleeping and
relinquishes the processor. At this point, the
process is sleeping.

• At some later point, when the request is com-
plete, the interrupt handler calls wakeup
with the address which was passed to
tsleep. wakeup runs through a list of
sleeping processes and wakes all processes
waiting on this particular address.

This method has problems even on single proces-
sors: the time to wake processes depends on the
number of sleeping processes, which is usually
only slightly less than the number of processes in
the system. FreeBSD addresses this problem with
128 hashed sleep queues, effectively diminishing
the search time by a factor of 128. A large system
might have 10,000 processes running at the same
time, so this is only a partial solution.

In addition, it is permissible for more than one
process to wait on a specific address. In extreme
cases dozens of processes wait on a specific ad-
dress, but only one will be able to run when the
resource becomes available; the rest call tsleep
again. The term thundering horde has been de-
vised to describe this situation. FreeBSD has par-
tially solved this issue with the wakeup_one
function, which only wakes the first process it
finds. This still involves a linear search through a
possibly large number of process structures, and it
has the potential to deadlock if two unrelated

ev ents map to the same address.

Adapting the UNIX model to SMP

A number of the basic assumptions of this model
no longer apply to SMP, and others become more
of a problem:

• More than one processor is available. Code
can run in parallel.

• Interrupt handlers and user processes can run
on different processors at the same time.

• The ‘‘non-preemption’’ rule is no longer suffi-
cient to ensure that two processes can’t ex-
ecute at the same time, so it would theoreti-
cally be possible for two processes to allocate
the same memory.

• Locking out interrupts must happen in every
processor. This can adversely affect perfor-
mance.

The initial FreeBSD model

The original version of FreeBSD SMP support
solved these problems in a manner designed for
reliability rather than performance: effectively it
found a method to simulate the single-processor
paradigm on multiple processors. Specifically,
only one process could run in the kernel at any
one time. The system ensured this with a spin-
lock, the so-called Big Kernel Lock (BKL), which
ensured that only one processor could be in the
kernel at a time. On entry to the kernel, each pro-
cessor attempted to get the BKL. If another pro-
cessor was executing in kernel mode, the other
processor performed a busy wait until the lock
became free:

MPgetlock_edx:
1:

movl (%edx), %eax
movl %eax, %ecx
andl $CPU_FIELD,%ecx
cmpl _cpu_lockid, %ecx
jne 2f
incl %eax
movl %eax, (%edx)
ret

2:
movl $FREE_LOCK, %eax
movl _cpu_lockid, %ecx
incl %ecx
lock
cmpxchg %ecx, (%edx)
jne 1b
GRAB_HWI
ret

In an extreme case, this waiting could degrade
SMP performance to below that of a single pro-
cessor machine.

How to solve the dilemma

Multiple processor machines have been around
for a long time, since before UNIX was written.
During this time, a number of solutions to this
kind of problem have been devised. The problem
was less to find a solution than to find a solution
which would fit in the UNIX environment. At
least the following synchronization primitives
have been used in the past:

• Counting semaphores were originally de-
signed to share a certain number of resources
amongst potentially more consumers. To get
access, a consumer decrements the semaphore
counter, and when it is finished it increments
it again. If the semaphore counter goes neg-
ative, the process is placed on a sleep queue.
If it goes from -1 to 0, the first process on the
sleep queue is activated. This approach is a
possible alternative to tsleep and wakeup
synchronization. In particular, it avoids a
lengthy sequential search of sleeping process-
es.

• SunOS 5 uses turnstiles to address the se-
quential search problem in tsleep and
wakeup synchronization. A turnstile is a
separate queue associated with a specific wait
address, so the need for a sequential search
disappears.

• Spin locks have already been mentioned.
FreeBSD used to spin indefinitely on the
BKL, which doesn’t make any sense, but they
are useful in cases where the wait is short; a
longer wait will result in a process being sus-
pended and subsequently rescheduled. If the
av erage wait for a resource is less than this
time, then it makes sense to spin instead.

• Blocking locks are the alternative to spin
locks when the wait is likely to be longer than
it would take to reschedule. A typical imple-
mentation is similar to a counting semaphore
with a count of 1.

• Condition variables are a kind of blocking
lock where the lock is based on a condition,
for example the absence of entries in a queue.

• Read/write locks address a different issue:
frequently multiple processes may read spe-
cific data in parallel, but only one may write
it.

There is some confusion in terminology with
these locking primitives. In particular, the term
mutex has been applied to nearly all of them at
different times. We’ll look at how FreeBSD uses
the term in the next section.

One big problem with all locking primitives with
the exception of spin locks is that they can block.
This requires a process context: a UNIX interrupt
handler can’t block. This is one of the reasons
that the old BKL was a spinlock, even though it
could potentially use up most of processor time
spinning.

The new FreeBSD implementation

The new implementation of SMP on FreeBSD
bases heavily on the implementation in BSD/OS
5.0, which has not yet been released. Even the
name SMPng (‘‘new generation’’) was taken from
BSD/OS. Due to the open source nature of
FreeBSD, SMPng is available on FreeBSD before
on BSD/OS.

The most radical difference in SMPng are:

• Interrupt code (‘‘bottom half’’) now runs in a
process context, enabling it to block if neces-
sary. This process context is termed an inter-
rupt thread.

• Interrupt lockout primitives (splfoo) hav e
been removed. The low-level interrupt code
still needs to block interrupts briefly, but the
interrupt service routines themselves run with
interrupts enabled. Instead of locking out in-
terrupts, the system uses mutexes, which may
be either spin locks or blocking locks.

Interrupt threads

The single most important aspect of the imple-
mentation is the introduction of a process or
‘‘thread’’ context for interrupt handlers. This
change involves a number of tradeoffs:

• The process context allows a uniform ap-
proach to synchronization: it is no longer nec-
essary to provide separate primitives to syn-
chronize the top half and the bottom half. In
particular, the spl primitives are no longer

needed. For compatibility reasons, the calls
have been retained, but they translate to no-
ops.

• The action of scheduling another process
takes significantly longer than interrupt over-
head, which also remains.

• The UNIX approach to scheduling does not
allow preemption if the process is running in
kernel mode.

SMPng solves the latency and scheduling issues
with a technique known as lazy scheduling: on re-
ceiving an interrupt, the interrupt stubs note the
PID of the interrupt thread, but they do not sched-
ule the thread. Instead, it continues execution in
the context of the interrupted process. The thread
will be scheduled only in the following circum-
stances:

• If the thread has to block.

• If the interrupt nesting level gets too deep.

We expect this method to offer negligible over-
head for the majority of interrupts.

From a scheduling viewpoint, the threads differ
from normal processes in the following ways:

• They nev er enter user mode, so they do not
have user text and data segments.

• They all share the address space of process 0,
the swapper.

• They run at a higher priority than all user pro-
cesses.

• Their priority is not adjusted based on load: it
remains fixed.

• An additional process state SWAIT has been
introduced for interrupt processes which are
currently idle: the normal ‘‘idle’’ state is
SSLEEP, which implies that the process is
sleeping.

Experience with the BSD/OS implementation
showed that the initial implementation of interrupt
threads was a particularly error-prone process,
and that the debugging tools were inadequate.
Due to the nature of the FreeBSD project, we
considered it imperative to hav e the system rela-
tively functional at all times during the transition,
so we decided to implement interrupt threads in
two stages. The initial implementation was very
similar to that of normal processes. This offered
the benefits of relatively easy debugging and of
stability, and the disadvantage of a significant

drop in performance: each interrupt could poten-
tially cause two context switches, and the inter-
rupt would not be handled while another process,
ev en a user process, was in the kernel.

Experience with the initial implementation met
expectations: we have seen no stability problems
with the implementation, and the performance,
though significantly worse, was not as bad as we
had expected.

At the time of writing, we have improved the im-
plementation somewhat by allowing limited ker-
nel preemption, allowing interrupt threads to be
scheduled immediately rather than having to wait
for the current process to leave kernel mode. The
potential exists for complete kernel preemption,
where any higher priority process can preempt a
lower priority process running in the kernel, but
we are not sure that the benefits will outweigh the
potential bug sources.

The final lazy scheduling implementation has
been tested, but it is not currently in the -CUR-
RENT kernel. Due to the current kernel lock im-
plementation, it would not show any significant
performance increase, and problems can be ex-
pected as additional kernel components are mi-
grated from under Giant.

Not all interrupts have been changed to threaded
interrupts. In particular, the old fast interrupts re-
main relatively unchanged, with the restriction
that they may not use any blocking mutexes. Fast
interrupts have typically been used for the serial
drivers, and are specific to FreeBSD: BSD/OS has
no corresponding functionality.

Locking constructs

The initial BSD/OS implementation defined two
basic types of lock, called mutex :

• The default locking construct is the spin/sleep
mutex. This is similar in concept to a
semaphore with a count of 1, but the imple-
mentation allows spinning for a certain period
of time if this appears to be of benefit (in oth-
er words, if it is likely that the mutex will be-
come free in less time than it would take to
schedule another process), though this feature
is not currently in use. It also allows the user
to specify that the mutex should not spin. If
the process cannot obtain the mutex, it is
placed on a sleep queue and woken when the
resource becomes available.

• An alternate construct is a spin mutex. This
corresponds to the spin lock which was al-
ready present in the system. Spin mutexes are
used only in exceptional cases.

The implementation of these locks was derived al-
most directly from BSD/OS, but has since been
modified significantly.

In addition to these locks, the FreeBSD project
has included two further locking constructs:

Condition variables are built on top of mutexes.
They consist of a mutex and a wait queue. The
following operations are supported:

• Acquire a condition variable with
cv_wait(), cv_wait_sig(),
cv_timedwait() or cv_timed-
wait_sig().

• Before acquiring the condition variable, the
associated mutex must be held. The mutex
will be released before sleeping and reac-
quired on wakeup.

• Unblock one waiter with cv_signal().

• Unblock all waiters with cv_broad-
cast().

• Wait for queue empty with
cv_waitq_empty.

• Same functionality available from the
msleep function.

Shared/exclusive locks, or sx locks, are effectively
read-write locks. The difference in terminology
came from an intention to add additional func-
tionality to these locks. This functionality has not
been implemented, so currently sx locks are the
same thing as read-write locks: they allow access
by multiple readers or a single writer.

The implementation of sx locks is relatively ex-
pensive:

struct sx {
struct lock_object sx_object;
struct mtx sx_lock;
int sx_cnt;
struct cv sx_shrd_cv;
int sx_shrd_wcnt;
struct cv sx_excl_cv;
int sx_excl_wcnt;
struct proc *sx_xholder;

};

They should be only used where the vast majority
of accesses is shared.

• Create an sx lock with sx_init().

• Attain a read (shared) lock with
sx_slock() and release it with sx_sun-
lock().

• Attain a write (exclusive) lock with
sx_xlock() and release it with sx_xun-
lock().

• Destroy an sx lock with sx_destroy.

Removing the Big Kernel Lock

These modifications made it possible to remove
the Big Kernel Lock. The initial implementation
replaced it with two mutexes:

• Giant is used in a similar manner to the
BKL, but it is a blocking mutex. Currently it
protects all entry to the kernel, including in-
terrupt handlers. In order to be able to block,
it must allow scheduling to continue.

• sched_lock is a spin lock which protects
the scheduler queues.

This combination of locks supplied the bare mini-
mum of locks necessary to build the new frame-
work. In itself, it does not improve the perfor-
mance of the system, since processes still block
on Giant.

Idle processes

The planned light-weight interrupt threads need a
process context in order to work. In the tradition-
al UNIX kernel, there is not always a process con-
text: the pointer curproc can be NULL. SMPng
solves this problem by having an idle process
which runs when no other process is active.

Recursive locking

Normally, if a lock is locked, it cannot be locked
again. On occasions, however, it is possible that a
process tries to acquire a lock which it already
holds. Without special checks, this would cause a
deadlock. Many implementations allow this so-
called recursive locking. The locking code checks
for the owner of the lock. If the owner is the cur-
rent process, it increments a recursion counter.
Releasing the lock decrements the recursion
counter and only releases the lock when the count
goes to zero.

There is much discussion both in the literature
and in the FreeBSD SMP project as to whether re-
cursive locking should be allowed at all. In gen-

eral, we have the feeling that recursive locks are
evidence of untidy programming. Unfortunately,
the code base was never designed for this kind of
locking, and in particular library functions may
attempt to reacquire locks already held. We hav e
come to a compromise: in general, they are dis-
couraged, and recursion must be specifically en-
abled for each mutex, thus avoiding recursion
where it was not intended.

Migrating to fine-grained locking

Implementing the interrupt threads and replacing
the Big Kernel Lock with Giant and sched-
lock did not result in any performance im-
provements, but it provided a framework in which
the transition to fine-grained locking could be per-
formed. The next step was to choose a locking
strategy and migrate individual portions of the
kernel from under the protection of Giant.

One of the dangers of this approach is that lock-
ing conflicts might not be recognized until very
late. In particular, the FreeBSD project has differ-
ent people working on different kernel compo-
nents, and it does not have a strong centralized ar-
chitectural committee to determine locking strate-
gy. As a result, we developed the following
guidelines for locking:

• Use sleep mutexes. Spin mutexes should only
be used in very special cases and only with
the approval of the SMP project team. The
only current exception to this rule is the
scheduler lock, which by nature must be a
spin lock.

• Do not tsleep() while holding a mutex
other than Giant. The implementation of
tsleep() and cv_wait() automatically
releases Giant and gains it again on wakeup,
but no other mutexes will be released.

• Do not msleep() or cv_wait() while
holding a mutex other than Giant or the mu-
tex passed as a parameter to msleep().
msleep() is a new function which com-
bines the functionality with atomic release
and regain of a specified mutex.

• Do not call a function that can grab Giant and
then sleep unless no mutexes (other than pos-
sibly Giant) are held. This is a consequence
of the previous rules.

• If calling msleep() or cv_wait() while
holding Giant and another mutex, Giant
must be acquired first and released last. This

avoids lock order reversals.

• Except for the Giant mutex used during the
transition phase, mutexes protect data, not
code.

• Do not msleep() or cv_wait() with a
recursed mutex. Giant is a special case and
is handled automagically behind the scenes,
so don’t pass Giant to these functions.

• Try to hold mutexes for as little time as possi-
ble.

• Try to avoid recursing on mutexes if at all
possible. In general, if a mutex is recursively
entered, the mutex is being held for too long,
and a redesign is in order.

One of the weaknesses of the project structure is
that there is no overall strategy for locking. In
many cases, the choice of locking construct and
granularity is left to the individual developer. In
almost every case, locks are leaf node locks: very
little code locks more than one lock at a time, and
when it does, it is in a very tight context. This re-
sults in relatively reliable code, but it may not be
result in optimum performance.

There are a number of reasons why we persist
with this approach:

• FreeBSD is a volunteer project. Developers
do what they think is best. They are unlikely
to agree to an alternative implementation.

• We do not currently have enough architectural
direction, nor enough experience with other
SMP systems, to come up with an ideal lock-
ing strategy. This derives from the volunteer
nature of the project, but note also that large
UNIX vendors have found the choice of lock-
ing strategy to be a big problem.

• Unlike large companies, there is much less
concern about throwaway implementations.
If we find that the performance of a system
component is suboptimal, we will discard it
and start with a different implementation.

Migrating interrupt handlers

This new basic structure is now in place, and im-
plementation of finer grained locking is proceed-
ing. Giant will remain as a legacy locking mecha-
nism for code which has not been converted to the
new locking mechanism. For example, the main
loop of the function ithread_loop, which

runs an interrupt handler, contains the following
code:

if ((ih->ih_flags & IH_MPSAFE) == 0)
mtx_lock(&Giant);

....
ih->ih_handler(ih->ih_argument);
if ((ih->ih_flags & IH_MPSAFE) == 0)

mtx_unlock(&Giant);

The flag INTR_MPSAFE indicates that the inter-
rupt handler has its own synchronization primi-
tives.

A typical strategy planned for migrating device
drivers involves the following steps:

• Add a mutex to the driver softc.

• Set the INTR_MPSAFE flag when registering
the interrupt.

• Obtain the mutex in the same kind of situation
where previously an spl was used. Unlike
spls, however, the interrupt handlers must
also obtain the mutex before accessing shared
data structures.

Probably the most difficult part of the process will
involve larger components of the system, such as
the file system and the networking stack. We
have the example of the BSD/OS code, but it’s
currently not clear that this is the best path to fol-
low.

Kernel trace facility

The ktr package provides a method of tracing
kernel events for debugging purposes. It is not in-
tended for use during normal operation, and
should not be confused with the kernel call trace
facility ktrace.

For example, the function sched_ithd, which
schedules the interrupt threads, contains the fol-
lowing code:

CTR3(KTR_INTR,
"sched_ithd pid %d(%s) need=%d",
ir->it_proc->p_pid,
ir->it_proc->p_comm,
ir->it_need);

...
if (ir->it_proc->p_stat == SWAIT) {

CTR1(KTR_INTR,
"sched_ithd: setrunqueue %d",
ir->it_proc->p_pid);

The function ithd_loop, which runs the inter-
rupt in process context, contains the following
code at the beginning and end of the main loop:

for (;;) {
CTR3(KTR_INTR,

"ithd_loop pid %d(%s) need=%d",
me->it_proc->p_pid,
me->it_proc->p_comm,
me->it_need);

...
CTR1(KTR_INTR,

"ithd_loop pid %d: done",
me->it_proc->p_pid);

mi_switch();
CTR1(KTR_INTR,

"ithd_loop pid %d: resumed",
me->it_proc->p_pid);

The calls CTR1 and CTR3 are two macros which
only compile any kind of code when the kernel is
built with the KTR kernel option. If the kernel
contains this option and the bit KTR_INTR is set
in the variable ktr_mask, then these events will
be masked to a circular buffer in the kernel. The
ddb debugger has a command show ktr which
dumps the buffer one page at a time, and gdb
macros are also available. This gives a relatively
useful means of tracing the interaction between
processes:

2791 968643993:219224100
cpu1 ../../i386/isa/ithread.c:214
ithd_loop pid 21 ih=0xc235f200:
0xc0324d98(0) flg=100

2790 968643993:219214043
cpu1 ../../i386/isa/ithread.c:197
ithd_loop pid 21(irq0: clk) need=1

2789 968643993:219205383
cpu1 ../../i386/isa/ithread.c:243
ithd_loop pid 21: resumed

2788 968643993:219190856
cpu1 ../../i386/isa/ithread.c:158
sched_ithd: setrunqueue 21

2787 968643993:219179402
cpu1 ../../i386/isa/ithread.c:120
sched_ithd pid 21(irq0: clk) need=0

The lines here are too wide for the paper, so they
are shown wrapped as several lines. This exam-
ple traces the arrival and processing of a clock in-
terrupt on the i386 platform, in reverse chronolog-
ical order. The number at the beginning of the
line is the trace entry number.

• Entry 2787 shows the arrival of an interrupt at
the beginning of sched_ithd. The second
value on the trace line is the time since the
epoch, followed by the CPU number and the
file name and line number. The remaining
values are supplied by the program to the
CTR3 function.

• Entry 2788 shows the second trace call in
sched_ithd, where the interrupt handler is
placed on the run queue.

• Entry 2789 shows the entry into the main loop
of ithd_loop.

• Entries 2790 and 2791 show the exit from the
main loop of ithd_loop.

Witness facility

The witness code was designed specifically to de-
bug mutex code. It keeps track of the locks ac-
quired and released by each thread. It also keeps
track of the order in which locks are acquired
with respect to each other. Each time a lock is ac-
quired, witness uses these two lists to verify that a
lock is not being acquired in the wrong order. If a
lock order violation is detected, then a message is
output to the kernel console detailing the locks in-
volved and the locations in question. Witness can
also be configured to drop into the kernel debug-
ger when an order violation occurs.

The witness code also checks various other condi-
tions such as verifying that one does not recurse
on a non-recursive lock. For sleep locks, witness
verifies that a new process would not be switched
to when a lock is released or a lock is blocked on
during an acquire while any spin locks are held.
If any of these checks fail, the kernel will panic.

Project status

The project started in June 2000. The major mile-
stones in the development are:

• June 2000: Ported the BSD/OS mutex code
and replaced the Big Kernel Lock with Gi-
ant and sched_lock.

• September 2000: Replaced interrupt handlers
with heavyweight interrupt processors. Initial
commit to the FreeBSD source tree.

• November 2000: Made softclock MP-safe
and migrate from under Giant.

• January 2001: Implemented condition vari-
ables.

• March 2001: Implemented read/write locks
(called ‘‘shared/exclusive’’ or sx locks).

• March 2001: Complete locking of enough of
the proc structure to allow signal handlers to
be moved from under Giant.

The main issue in the immediate future is to mi-
grate more and more code out from under Gi-
ant. In more detail, we have identified the fol-

lowing major tasks, some of which are in an ad-
vanced state of implementation:

• Split NFS into client and server.

• Add locking to NFS.

• Make the IP stack thread-safe.

• Create mechanism in cdevsw structure to
protect thread-unsafe drivers.

• Complete locking struct proc.

• Cleanup the various mp_machdep.c’s, unify
various SMP API’s such as IPI delivery, etc.

• Make printf() safe to call in almost any
situation to avoid deadlocks.

• Make mbuf system use condition variables in-
stead of msleep() and wakeup().

• Remove the MP safe syscall flag from the
system call table and add explicit mtx_lock
of Giant to all system calls which need it.

• Use per-CPU buffers for ktr to reduce syn-
chronization.

• Remove the priority argument from
msleep() and cv_wait().

• Implement lazy interrupt thread switching
(context stealing).

• Lock structs filedesc, pgrp, sigio,
session and ifnet.

• Make the virtual memory subsystem thread-
safe.

• Convert select() to use condition vari-
ables.

• Reimplement kqueue using condition vari-
ables.

• Conditionalize atomic operations used for de-
bugging statistics.

• Lock the virtual file system code.

Performance

The implementation has not progressed far
enough to make any firm statements about perfor-
mance, but we are expecting reasonable scalabili-
ty to beyond 32 processor systems.

Acknowledgements

The FreeBSD SMPng project was made possible
by BSDi’s generous donation of code from the
development version 5.0 of BSD/OS. The main
contributors were:

• John Baldwin rewrote the low lev el interrupt
code for i386 SMP, made much code machine
independent, worked on the WITNESS code,
converted allproc and proctree locks
from lockmgr locks to sx locks, created a
mechanism in cdevsw structure to protect
thread-unsafe drivers, locked struct proc and
unified various SMP API’s such as IPI deliv-
ery.

• Jake Burkholder ported the BSD/OS locking
primitives for i386, implemented msleep(),
condition variables and kernel preemption.

• Matt Dillon converted the Big Kernel spin-
lock to the blocking Giant lock and added
the scheduler lock and per-CPU idle process-
es.

• Jason Evans made malloc and friends thread-
safe, converted simplelocks to mutexes and
implemented sx (shared/exclusive) locks.

• Greg Lehey implemented the heavy-weight
interrupt threads, rewrote the low lev el inter-
rupt code for i386 UP, removed spl s and port-
ed the BSD/OS ktr code.

• Bosko Milekic made sf_bufs thread-safe,
cleaned up the mutex API and made the mbuf
system use condition variables instead of
msleep().

• Doug Rabson ported the BSD/OS locking
primitives. implemented the heavy-weight in-
terrupt threads and rewrote the low lev el inter-
rupt code for the Alpha architecture.

Further contributors were Tor Egge, Seth Kings-
ley, Jonathan Lemon, Mark Murray, Chuck Pater-
son, Bill Paul, Alfred Perlstein, Dag-Erling
Smørgrav and Peter Wemm.

Bibliography

Per Brinch Hansen, Operating System Principles.
Prentice-Hall, 1973.

Marshall Kirk McKusick, Keith Bostic, Michael
J. Karels, John S. Quarterman, The Design and

Implementation of the 4.4BSD Operating System,
Addison-Wesley 1996.

Curt Schimmel, UNIX Systems for Modern Archi-
tectures, Addison-Wesley 1994.

Uresh Vahalia, UNIX Internals. Prentice-Hall,
1996.

Further reference

See the FreeBSD SMP home page at
http://www.FreeBSD.org/smg/.

