
5
Building the package

Now we hav e configured our package and we’re ready to build. This is the Big Moment: at
the end of the build process we should have a complete, functioning software product in our
source tree. In this chapter, we’ll look at the surprises that make can have in store for you.
You can find the corresponding theoretical material in Chapter 19, Make.

Preparation
If you’re unlucky, a port can go seriously wrong. The first time that error messages appear
thick and fast and scroll off the screen before you can read them, you could get the impression
that the packages were built this way deliberately to annoy you.

A little bit of preparation can go a long way towards keeping you in control of what’s going
on. Here are some suggestions:

Make sure you have enough space
One of the most frequent reasons of failure of a build is that the file system fills up. If possi-
ble, ensure that you have enough space before you start. The trouble is, how much is enough?
Hardly any package will tell you how much space you need, and if it does it will probably be
wrong, since the size depends greatly on the platform. If you are short on space, consider
compiling without debugging symbols (which take up a lot of space). If you do run out of
space in the middle of a build, you might be able to save the day by stripping the objects with
strip, in other words removing the symbols from the file.

Use a windowing system
The sheer size of a complicated port can be a problem. Like program development, porting
tends to be an iterative activity. You edit a file, compile, link, test, go back to edit the file, and
so on. It’s not uncommon to find yourself having to compare and modify up to 20 different
files in 5 different directories, not to mention running make and the debugger. In adddition, a
single line of output from make can easily be 5000 or 10000 characters long, many times the
screen capacity of a conventional terminal.

59

5 February 2005 02:09

60

All of these facts speak in favour of a windowing system such as X11, preferably with a high-
resolution monitor. You can keep your editor (or editors, if they don’t easily handle multiple
files) open all the time, and run the compiler and debugger in other windows. If multiple
directories are involved, it’s easier to maintain multiple xterms, one per directory, than to con-
tinually change directories. A correctly set up xterm will allow you to scroll back as far as
you want — I find that 250 lines is adequate.

Keep a log file
Sooner or later, you’re going to run into a bug that you can’t fix immediately: you will have to
experiment a bit before you can fix the problem. Like finding your way through a labyrinth,
the first time through you will probably not take the most direct route, and it’s nice to be able
to find your way back again. In the original labyrinth, Theseus used a ball of string to find his
way both in and out. The log file, a text file describing what you’ve done, is the computer
equivalent of the ball of string, so you should remember to roll it up again. If you’re running
an editor like emacs, which can handle multiple files at a time, you can keep the log in the edi-
tor buffer and remove the notes again when you back out the changes.

In addition to helping you find your way out of the labyrinth, the log will also be of use later
when you come to install an updated version of the software. To be of use like this, it helps to
keep additional information. For example, here are some extracts from a log file for the gcc:

Platform: SCO UNIX System V.3.2.2.0
Revision: 2.6.0
Date ported: 25 August 1994
Ported by: Greg Lehey, LEMIS
Compiler used: rcc, gcc-2.6.0
Library: SCO

0. configure i386-unknown-sco --prefix=/opt. It sets local_prefix to
/usr/local anyway, and won’t listen to --local_prefix. For some
reason, config decides that it should be cross-compiling.

1. function.c fails to compile with the message function.c: 59: no
space. Compile this function with ISC gcc-2.5.8.

2. libgcc.a was not built because config decided to cross-compile.
Re-run config with configure i386-*-sco --prefix=/opt, and do an
explicit make libgcc.a.

3. crtbegin.o and crtend.o were not built. Fix configure:

--- configure˜ Tue Jul 12 01:25:53 1994
+++ configure Sat Aug 27 13:09:27 1994
@@ -742,6 +742,7 @@

else
tm_file=i386/sco.h
tmake_file=i386/t-sco

+ extra_parts="crtbegin.o crtend.o"

5 February 2005 02:09

Chapter 5: Building the package 61

fi
truncate_target=yes
;;

Keeping notes about problems you have with older versions helps a lot: this example repre-
sents the results of a considerable time spent debugging the make procedure. If you didn’t
have the log, you’d risk tripping over this problem every time.

Save make output
Typically, to build a package, after you have configured it, you simply type

$ make

Then the fireworks start. You can sit and watch, but it gets rather boring to watch a package
compile for hours on end, so you usually leave it alone once you have a reasonable expecta-
tion that it will not die as soon as you turn your back. The problem is, of course, that you may
come back and find a lot of gobbldegook on the screen, such as:

make[5]: execve: ../../config/makedepend/makedepend: No such file or directory
make[5]: *** [depend] Error 127
make[5]: Leaving directory ‘/cdcopy/SOURCE/X11/X11R6/xc/programs/xsetroot’
depending in programs/xstdcmap...
make[5]: Entering directory ‘/cdcopy/SOURCE/X11/X11R6/xc/programs/xstdcmap’
checking ../../config/makedepend/makedepend over in ../../config/makedepend first...
make[6]: Entering directory ‘/cdcopy/SOURCE/X11/X11R6/xc/config/makedepend’
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -fwritable-strings -O \
-I../../config/imake -I../.. OSDefines -DSYSV -DSYSV386 -c include.c
gcc: OSDefines: No such file or directory
In file included from include.c:30:
def.h:133: conflicting types for ‘getline’
/opt/include/stdio.h:505: previous declaration of ‘getline’
Broken pipe

This is from a real life attempt to compile X11R6, normally a fairly docile port. The target
makedepend failed to compile, but why? The reason has long since scrolled off the screen.*

You can have your cake and eat it too if you use tee to save your output:

$ make 2>&1 | tee -a Make.log

This performs the following actions:

• It copies error output (file descriptor 2) to standard output (file descriptor 1) with the
expression 2>&1.

• It pipes the combined standard output to the program tee, which echos it to its standard
output and also copies it to the file Make.log.

* Well, there is a clue, but it’s very difficult to see unless you have been hacking X11 configurations
longer than is good for your health. OSDefines is a symbol used in X11 configuration. It should have
been replaced by a series of compiler flags used to define the operating system to the package. In this
case, the X11 configuration was messed up, and nothing defined OSDefines, so it found its way to the
surface.

5 February 2005 02:09

62

• In this case, I specified the -a option, which tells tee to append to any existing Make.log.
If I don’t supply this flag, it will erase any previous contents. Depending on what you’re
doing, you may or may not want to use this flag.

If you’re not sure what your make is going to do, and especially if the Makefile is complicated,
consider using the -n option. This option tells make to perform a “dry run”: it prints out the
commands that it would execute, but doesn’t actually execute them.

These comparatively simple conventions can save a lot of pain. I use a primitive script called
Make which contains just the single line:

make 2>&1 $* | tee -a Make.log

It’s a good idea to always use the same name for the log files so that you can find them easily.

Standard targets
Building packages consists of more than just compiling and linking, and by convention many
Makefiles contain a number of targets with specific meanings. In the following sections we’ll
look at some of the most common ones.

make depend
make depend creates a list of dependencies for your source tree, and usually appends it to the
Makefile. Usually it will perform this task with makedepend, but sometimes you will see a
depend target that uses gcc with the -M flag or cpp. depend should be the first target to run,
since it influences which other commands need to be executed. Unfortunately, most Makefiles
don’t hav e a depend target. It’s not difficult to write one, and it pays off in the reduction of
strange, unaccountable bugs after a rebuild of the package. Here’s a starting point:

depend:
makedepend *.[ch]

This will work most of the time, but to do it correctly you need to analyze the structure of the
package: it might contain files from other languages, or some files might be created by shell
scripts or special configuration programs. Hopefully, if the package is this complicated, it will
also have a depend target.

Even if you have a depend target, it does not always work as well as you would hope. If you
make some really far-reaching changes, and things don’t work the way you expect, it’s worth
starting from scratch with a make clean to be sure that the make still works.

make all
make all is the normal way to perform the build. Frequently, it is the default target (the first
target in the Makefile), and you just need to enter make. This target typically rebuilds the
package but does not install it.

5 February 2005 02:09

Chapter 5: Building the package 63

make install
make install installs the compiled package into the local system environment. The usage
varies considerably; we’ll look at this target in more detail in Chapter 9, Installation, page
126.

make clean
make clean normally removes everything that make all has made—the objects, executables
and possibly auxiliary files. You use it after deciding to change a compiler, for example, or to
save space after you have finished an installation. Be careful with make clean: there is no
complete agreement about exactly what it removes, and frequently you will find that it doesn’t
remove everything it should, or it is too eager and removes lots of things it shouldn’t. make
clean should remove everything that make all can make again — the intermediate and instal-
lable files, but not the configuration information that you may have taken days to get right.

make stamp-halfway
Occasionally you see a target like make stamp-halfway. The commands perform a lot of other
things, and at the end just create an empty file called stamp-halfway. This is a short cut to
save lots of complicated dependency checking: the presence of this file is intended to indicate
that the first half of the build is complete, and that a restart of make can proceed directly to the
second half. Good examples of this technique can be found in the Makefile for the GNU C
compiler, and in the X11 source tree, which uses the name DONE for the stamp file.

Problems running make
Ideally, running make should be simple:

$ make all
lots of good messages from make

Things don’t always go this smoothly. You may encounter a number of problems:

• You may not be able to find a Makefile, or the targets don’t work the way you expect.

• make may not be able to make any sense of the Makefile.

• The Makefile may refer to non-existent files or directories.

• make seems to run, but it doesn’t rebuild things it should, or it rebuilds things it
shouldn’t.

• You can’t find anything that’s wrong, but make still produces obscure error messages.

In the following sections we’ll look at each of these problems. Here’s an overview of the

5 February 2005 02:09

64

types of error message we’ll consider:

Table 5−1: Problems running make

Problem page

Argument list too long 74
"$! nulled, predecessor circle" 71
"Circular dependency dropped" 71
"Commands commence before first target" 70
Comments in command lists 69
"Graph cycles through target 71
Incorrect continuation lines 73
Incorrect dependencies 68
make forgets the current directory 70
"Missing separator - stop" 70
Missing targets 66
No dependency on Makefile 68
No Makefile 64
Nonsensical targets 71
Problems with make clean 72
Problems with subordinate makes 68
Prompts in Makefiles 74
Subordinate makes 72
Syntax errors from the shell 71
Tr ailing blanks in variables 69
Unable to stop make 71
Wrong flavour of make 66
Wrong Makefile 66

Missing Makefile or targets
Sometimes make won’t even let you in the door—it prints a message like:

$ make all
Don’t know how to make all. Stop.

The first thing to check here is whether there is a Makefile. If you don’t find Makefile or
makefile, check for one under a different name. If this is the case, the author should have doc-
umented where the Makefile comes from—check the README files and other documentation
that came with the package. You may find that the package uses separate Makefiles for differ-
ent architectures. For example, Makefile may be correct only if you are compiling in a BSD
environment. If you want to compile for a System V machine, you may need to specify a dif-
ferent Makefile:

5 February 2005 02:09

Chapter 5: Building the package 65

$ make -f Makefile.sysv

This is a pain because it’s so easy to make a mistake. In extreme cases the compiler will suc-
cessfully create objects, but they will fail to link.

Other possibilities include:

• The Makefile is created by the configuration process, and you haven’t configured yet.
This would be the case if you find an Imakefile (from which you create a Makefile with
xmkmf—see Chapter 4, Package configuration, page 57), or Makefile.in (GNU config-
ure—see page 55).

• The directory you are looking at doesn’t need a Makefile. The Makefile in the parent
directory, also part of the source tree, could contain rules like:

foo/foo: foo/*.c
${CC} foo/*.c -o foo/foo

In other words, the executable is made automatically when you execute make foo/foo in
the parent directory. As a rule, you start building in the root directory of a package, and
perform explicit builds in subdirectories only if something is obviously wrong.

• The author of the package doesn’t believe in Makefiles, and has provided a shell script
instead. You often see this with programs that originated on platforms that don’t hav e a
make program.

• There is really nothing to build the package: the author is used to doing the compilation
manually. In this case, your best bet is to write a Makefile from scratch. The skeleton in
Example 5-1 will get you a surprisingly long way. The empty targets are to remind you
what you need to fill in:

Example 5−1:

SRCS = list of C source files
OBJS = ${SRCS:.c=.o} corresponding object files
CC=gcc file name of compiler
CFLAGS=-g -O3 flags for compiler
LDFLAGS=-g flags for linker
BINDIR=/opt/bin
LIBDIR=/opt/lib
MANDIR=/opt/man
MAN1DIR=man1
INFODIR=/opt/info
PROGRAM= name of finished program

all: $(PROGRAM)
${CC} ${LDFLAGS} -o ${PROGRAM} ${OBJS}

man:

doc:

install: all

5 February 2005 02:09

66

Example 5−1: (continued)

depend:
makedepend ${SRCS}

clean:
rm -f \#* *˜ core $(PROGRAM) *.o

Missing targets
Another obvious reason for the error message might be that the target all doesn’t exist: some
Makefiles have a different target name for each kind of system to which the Makefile has been
adapted. The README file should tell you if this is the case. One of the more unusual exam-
ples is gnuplot. You need to enter

$ make All
$ make x11 TARGET=Install

The better ones at least warn you—see Chapter 4, Package configuration, page 53, for an
example. I personally don’t like these solutions: it’s so much easier to add the following line
at the top of the Makefile:

BUILD-TARGET = build-bsd

The first target would then be:

all: ${BUILD-TARGET}

If you then want to build the package for another architecture, you need only change the sin-
gle line defining BUILD-TARGET.

make doesn’t understand the Makefile
Sometimes make produces messages that make no sense at all: the compiler tries to compile
the same file multiple times, each time giving it a different object name, or it claims not to be
able to find files that exist. One possible explanation is that various flavours of make have
somewhat different understandings of default rules. In particular, as we will see in Chapter
19, Make, there are a number of incompatibilities between BSD make and GNU make.

Alternatively, make may not even be tryining to interpret the Makefile. Somebody could have
hidden a file called makefile in the source tree. Most people today use the name Makefile for
make’s description file, probably because it’s easier to see in an ls listing, but make always
looks for a file called makefile (with lower case m) first. If you are using GNU make, it first
looks for a file called GNUmakefile before checking for makefile and Makefile.

5 February 2005 02:09

Chapter 5: Building the package 67

make refers to non-existent files
Building a package refers to a large number of files, and one of the most frequent sources of
confusion is a file that can’t be found. There are various flavours of this, and occasionally the
opposite happens, and you have trouble with a file that make finds, but you can’t find.

To analyse this kind of problem, it’s helpful to know how make is referring to a file. Here are
some possibilities:

• make may be looking for a dependent file, but it can’t find it, and it can’t find a rule to
build it. In this case you get a message like:

$ make
make: *** No rule to make target ‘config.h’. Stop.

• make may not be able to locate a program specified in a command. You get a message
like:

$ make foo.o
/bin/cc -c foo.o -o foo.c
make: execve: /bin/cc: No such file or directory
make: *** [foo.o] Error 127

• The compilers and other programs started by make also access files specified in the
source. If they don’t find them, you’ll see a message like

$ make foo.o
gcc -c foo.c -o foo.o
foo.c:1: bar.h: No such file or directory
make: *** [foo.o] Error 1

No matter where the file is missing, the most frequent reasons why it is not found are:

• The package has been configured incorrectly. This is particularly likely if you find that
the package is missing a file like config.h.

• The search paths are incorrect. This could be because you configured incorrectly, but it
also could be that the configuration programs don’t understand your environment. For
example, it’s quite common to find Makefiles with contents like:

AR = /bin/ar
AS = /bin/as
CC = /bin/cc
LD = /bin/cc

Some older versions of make need this, since they don’t look at the PATH environment
variable. Most modern versions of make do look at PATH, so the easiest way to fix such a
Makefile is to remove the directory component of the definitions.

5 February 2005 02:09

68

Problems with subordinate makes
Occasionally while building, the compiler complains about a file that doesn’t seem to be there.
This can be because the make is running in a subdirectory: large projects are frequently split
up into multiple subdirectories, and all the top level Makefile does is to run a number of subor-
dinate makes. If it is friendly, it also echos some indication of where it is at the moment, and
if it dies you can find the file. Newer versions of GNU make print messages on entering and
leaving a directory, for example:

make[1]: Entering directory ‘/cdcopy/SOURCE/Core/glibc-1.08.8/assert’
make[1]: Nothing to be done for ‘subdir_lib’.
make[1]: Leaving directory ‘/cdcopy/SOURCE/Core/glibc-1.08.8/assert’

If neither of these methods work, you have the option of searching for the file:

$ find . -name foo.c -print

or modifying the Makefile to tell you what’s going on.

make doesn’t rebuild correctly
One of the most insidious problems rebuilding programs occurs when make doesn’t rebuild
programs correctly: there’s no easy way to know that a module has been omitted, and the
results can be far-reaching and time-consuming. Let’s look at some possible causes of this
kind of problem.

Incorrect dependencies
One weakness of make is that you have to tell it the interdependencies between the source
files. Unfortunately, the dependency specifications are very frequently incorrect. Even if they
were correct in the source tree as delivered, changing configuration flags frequently causes
other header files to be included, and as a result the dependencies change. Make it a matter of
course to run a make depend after reconfiguring, if this target is supplied—see page 62 for
details on how to make one.

No dependency on Makefile
What happens if you change the Makefile? If you decide to change a rule, for example, this
could require recompilation of a program. To put it in make terms: all generated files depend
on the Makefile. The Makefile itself is not typically included in the dependency list. It really
should be, but that would mean rebuilding everything every time you change the Makefile, and
in most cases it’s not needed. On the other hand, if you do change your Makefile in the course
of a port, it’s a good idea to save your files, do a make clean and start all over again. If ev ery-
thing is OK, it will build correctly without intervention.

5 February 2005 02:09

Chapter 5: Building the package 69

Other errors from make
The categories we have seen above account for a large proportion of the error messages you
will see from make, but there are many others as well. In this section, we’ll look at other fre-
quent problems.

Trailing blanks in variables
You define a make variable with the syntax:

NAME = Definition # optional comment

The exact Definition starts at the first non-space character after the = and continues to the end
of the line or the start of the comment, if there is one. You can occasionally run into problems
with things like:

MAKE = /opt/bin/make # in case something else is in the path

When starting subsidiary makes, make uses the value of the variable MAKE as the name of the
program to start. In this case it is “/opt/bin/make ”— it has trailing blanks, and the exec call
fails. If you’re lucky, you get:

$ make
make: don’t know how to make make . stop.

This message does give you a clue: there shouldn’t be any white space between the name of
the target and the following period. On the other hand, GNU make is “friendly” and tidies up
trailing blanks, so it says:

$ make
/opt/bin/make subdir note the space before the target name "subdir"
make: execve: /opt/bin/make: No such file or directory
make: *** [suball] Error 127

The only clue you have here is the length of the space on the first line.

It’s relatively easy to avoid this sort of problem: avoid comments at the end of definition lines.

Comments in command lists
Some versions of make, notably XENIX, can’t handle rules of the form

doc.dvi: doc.tex
tex doc.tex

do it again to get the references right
tex doc.tex # same thing again

The first comment causes make to think that the rule is completed, and it stops. When you fix
this problem by removing the comment, you run into a second one: it doesn’t understand the
second comment either. This time it produces an error message. Again, you need to remove
the comment.

5 February 2005 02:09

70

make forgets the current directory
Occasionally, it looks as if make has forgotten what you tell it. Consider the following rule:

docs:
cd doc
${ROFF} ${RFLAGS} doc.ms > doc.ps

When you run it, you get:

$ make docs
cd doc
groff -ms doc.ms >doc.ps
gtroff: fatal error: can’t open ‘doc.ms’: No such file or directory
make: *** [docs] Error 1

So you look for doc.ms in doc, and it’s there. What’s going on? Each command is run by a
new shell. The first one executes the cd doc and then exits. The second one tries to execute
the groff command. Since the cd command doesn’t affect the parent environment, it has no
further effect, and you’re still in the original directory. To do this correctly, you need to write
the rule as:

docs:
cd doc; \
${ROFF} ${RFLAGS} doc.ms > doc.ps

This causes make to consider both lines as a single line, which is then passed to a single shell.
The semicolon after the cd is necessary, since the shell sees the command as a single line.

Missing separator - stop
This strange message is usually made more complicated because it refers to a line that looks
perfectly normal. In all probability it is trying to tell you that you have put leading spaces
instead of a tab on a command line. BSD make expects tabs, too, but it recovers from the
problem, and the message it prints if they are missing is much more intelligible:

"Makefile", line 21: warning: Shell command needs a leading tab

Commands commence before first target
This message, from System V make, is trying to tell you that you have used a tab character
instead of spaces at the beginning of the definition of a variable. GNU make does not have a
problem with this—it doesn’t even mention the fact — so you might see this in a Makefile
written for GNU make when you try to run it with System V make. BSD make cannot handle
tabs at the beginning of definitions either, and produces the message:

"Makefile", line 3: Unassociated shell command "CC=gcc"
Fatal errors encountered -- cannot continue

5 February 2005 02:09

Chapter 5: Building the package 71

Syntax errors from the shell
Many Makefiles contain relatively complicated shell script fragments. As we have seen, these
are constrained to be on one line, and most shells have rather strange relationship between
new line characters and semicolons. Here’s a typical example:

if test -d $(texpooldir); then exit 0; else mkdir -p $(texpooldir); fi

This example is all on one line, but you can break it anywhere if you end each partial line with
a backslash (\). The important thing here is the placement of the semicolons: a rule of thumb
is to put a semicolon where you would otherwise put a newline, but not after then or else.
For more details, check your shell documentation.

Circular dependency dropped
This message comes from GNU make. In System V make, it is even more obscure:

$! nulled, predecessor circle

BSD make isn’t much more help:

Graph cycles through docs

In each case, the message is trying to tell you that your dependencies are looping. This partic-
ular example was caused by the dependencies:

docs: man-pages

man-pages: docs

In order to resolve the dependency docs, make first needs to resolve man-pages. But in order
to resolve man-pages, it first needs to resolve docs—a real Catch 22 situation. Real-life loops
are, of course, usually more complex.

Nonsensical targets
Sometimes the first target in the Makefile does nothing useful: you need to explicitly enter
make all in order to make the package. There is no good reason for this, and every reason to
fix it—send the mods back to the original author if possible (and be polite).

Unable to stop make
Some Makefiles start a number of second and third level Makefiles with the -k option, which
tells make to continue if the subsidiary Makefile dies. This is quite convenient if you want to
leave it running overnight and collect all the information about numerous failures the next
morning. It also makes it almost impossible to stop the make if you want to: hitting the QUIT
key (CTRL-C or DEL on most systems) kills the currently running make, but the top-level
make just starts the next subsidiary make. The only thing to do here is to identify the top-level
make and stop it first, not an easy thing to do if you have only a single screen.

5 February 2005 02:09

72

Problems with make clean
make clean is supposed to put you back to square one with a build. It should remove all the
files you created since you first typed make. Frequently, it doesn’t achieve this result very
accurately:

• It goes back further than that, and removes files that the Makefile doesn’t know how to
make.*

• Other Makefiles remove configuration information when you do a make clean. This isn’t
quite as catastrophic, but you still will not appreciate it if this happens to you after you
have spent 20 minutes answering configuration questions and fixing incorrect assump-
tions on the part of the configuration script. Either way: before running a make clean for
the first time, make sure that you have a backup.

• make clean can also start off by doing just the opposite: in early versions of the GNU C
library, for example, it first compiled some things in order to determine what to clean up.
This may work most of the time, but is still a Bad Idea: make clean is frequently used to
clean up after some catastrophic mess, or when restarting the port on a different platform,
and it should not be able to rely on being able to compile anything.

• Yet another problem with make clean is that some Makefiles hav e varying degrees of
cleanliness, from clean via realclean all the way to squeakyclean. There may be a need
for this, but it’s confusing for casual users.

Subordinate makes
Some subordinate makes use a different target name for the subsidiary makes: you might
write make all, but make might start the subsidiary makes with make subdirs. Although this
cannot always be avoided, it makes it difficult to debug the Makefile. When modifying Make-
files, you may frequently come across a situation where you need to modify the behaviour of
only one subsidiary make. For example, in many versions of System V, the man pages need to
be formatted before installation. It’s easy to tell if this applies to your system: if you install
BSD-style unformatted man pages, the man program will just display a lot of hard-to-read
nroff source. Frequently, fixing the Makefile is more work than you expect. A typical Make-
file may contain a target install that looks like:

install:
for dir in ${SUBDIRS}; do \
echo making $@ in $$dir; \
cd $$dir; ${MAKE} ${MDEFINES} $@; \
cd ..; \

done

make $@ expands to make install. One of these subdirectories is the subdirectory doc,

* If this does happen to you, don’t despair just yet. Check first whether this is just simple-mindedness
on the part of the Makefile—maybe there is a relatively simple way to recreate the files. If not, and you
forgot to make a backup of your source tree before you started, then you can despair.

5 February 2005 02:09

Chapter 5: Building the package 73

which contains the documentation and requires special treatment for the catman pages: they
need to be formatted before installation, whereas the man pages are not formatted until the
first time they are referenced—see Chapter 7, Documentation, page 99 for further informa-
tion. The simplest solution is a different target that singles out the doc and makes a different
target, say install-catman. This is untidy and requires some modifications to the variable
SUBDIRS to exclude doc. A simpler way is to create a new target, install-catman, and modify
all Makefiles to recognize it:

install-catman install-manman:
for dir in ${SUBDIRS}; do \
echo making $@ in $$dir; \
cd $$dir; ${MAKE} ${MDEFINES} $@; \
cd ..; \

done

In the Makefiles in the subdirectories, you might then find targets like

install-catman: ${MANPAGES}
for i in $<; do ${NROFF} -man $$i > ${CATMAN}/$i; done

install-manman: ${MANPAGES}
for i in $<; do cp $$i > ${MANMAN}/$i; done

The rule in the top-level Makefile is the same for both targets: you just need to know the name
to invoke it with. In this example we have also renamed the original install target so that it
doesn’t get invoked accidentally. By removing the install target altogether, you need to
make a conscious decision about what kind of man pages that your system wants.

We’re not done yet: we now hav e exactly the situation we were complaining about on page
66: it is still a nuisance to have to remember make install-catman or make install-manman.
We can get round this problem, too, with

INSTALL_TYPE=install-catman

install: ${INSTALL_TYPE}

After this, you can just enter make install, and the target install performs the type of installa-
tion specified in the variable INSTALL_TYPE. This variable needs to be modified from time to
time, but it makes it easier to avoid mistakes while porting.

Incorrect continuation lines
Makefiles frequently contain numerous continuation lines ending with \. This works only if it
is the very last character on the line. A blank or a tab following the backslash is invisible to
you, but it really confuses make.

Alternatively, you might continue something you don’t want to. Consider the following
Makefile fragment, taken from an early version of the Makefile for this book:

PART1 = part1.ms config.ms imake.ms make.ms tools.ms compiler.ms obj.ms \
documentation.ms testing.ms install.ms epilogue.ms

5 February 2005 02:09

74

At some point I decided to change the sequence of chapters, and removed the file tools.ms. I
was not completely sure I wanted to do this, so rather than just changing the Makefile, I com-
mented out the first line and repeated it in the new form:

PART1 = part1.ms config.ms imake.ms make.ms tools.ms compiler.ms obj.ms \
PART1 = part1.ms config.ms imake.ms make.ms compiler.ms obj.ms \

documentation.ms testing.ms install.ms epilogue.ms

This works just fine—at first. In fact, it turns out that make treats all three lines as a com-
ment, since the comment finished with a \ character. As a result, the variable PART1
remained undefined. If you comment out a line that ends in \, you should also remove the \.

Prompts in Makefiles
If you do the Right Thing and copy your make output to a log file, you may find that make just
hangs. The following kind of Makefile can cause this problem:

all: checkclean prog

checkclean:
@echo -n "Make clean first? "
@read reply; if ["$$reply" = ’y’]; then make clean; fi

If you run make interactively, you will see:

$ make
Make clean first?

If you copy the output to a file, of course, you don’t see the prompt, and it looks as if make is
hanging. This doesn’t mean it’s a bad idea to save your make output: it’s generally a bad idea
to put prompts into Makefiles. There are some exceptions, of course. The Linux configura-
tion program is a Makefile, and to interactively configure the system you enter make config.

Arg list too long
Sometimes make fails with this message, especially if you are running a System V system.
Many versions of System V limit the argument list to 5120 bytes—we’ll look at this in more
detail in Chapter 12, Kernel dependencies, page 169. Modern versions of System V allow
you to rebuild the kernel with a larger parameter list: modify the tuneable parameter ARG_MAX
to a value in the order of 20000. If you can’t do this, there are a couple of workarounds:

• The total storage requirement is the sum of the length of the argument strings and the
environment strings. It’s very possible that you have environment variables that aren’t
needed in this particular situation (in fact, if you’re like me, you probably have environ-
ment variables that you will never need again). If you remove some of these from your
shell startup file, you may get down below the limit.

• You might be able to simplify expressions. For example, if your Makefile contains a line
like

5 February 2005 02:09

Chapter 5: Building the package 75

clean:
rm -rf *.o *.a *.depend *˜ core ${INTERMEDIATES}

you can split it into

clean:
rm -rf *.o
rm -rf *.a *.depend *˜ core ${INTERMEDIATES}

In most large trees, the *.o filenames constitute the majority of the arguments, so you
don’t need more than two lines.

• Even after the previous example, you might find that the length of the *.o parameters is
too long. In this case, you could try naming the objects explicitly:

clean:
rm -rf [a-f]*.o
rm -rf [g-p]*.o
rm -rf [r-z]*.o
rm -rf *.a *.depend *˜ core ${INTERMEDIATES}

• Alternatively, you could specify the names explicitly in the Makefile:

OBJ1S = absalom.o arthur.o ... fernand.o
OBJ2S = gerard.o guillaume.o ... pierre.o
OBJ3S = rene.o roland.o ... zygyszmund.o
OBJS = ${OBJ1S} ${OBJ2S} ${OBJ3S}

clean:
rm -rf ${OBJ1S}
rm -rf ${OBJ2S}
rm -rf ${OBJ3S}

• Yet another method involves the use of the xargs program. This has the advantage of not
breaking after new files have been added to the lists:

clean:
find . -name "*.o" -print | xargs rm -f

This chops up the parameter list into chunks that won’t overflow the system limits.

Creating executable files

The xargs method is not much help if you want to build an executable file. If the command
that fails looks like

${PROG}:
${CC} ${ALLOBJS} -o ${PROG}

there are some other possibilities. You might be able to shorten the pathnames. If you are
building in a directory /next-release/SOURCE/sysv/SCO/gcc-2.6.0, and every file name in
ALLOBJS is absolute, it’s much easier to exceed the limit than if the directory name was, say,
/S. You could use a symbolic link to solve this problem, but most systems that don’t support
ARG_MAX also don’t hav e symbolic links.*

5 February 2005 02:09

76

If this doesn’t work, you could place the files in a library, possibly using xargs:

${PROG}:
rm libkludge.a
echo ${ALLOBJS} | xargs ar cruv libkludge.a
${CC} libkludge.a -o ${PROG}

This looks strange, since there’s no object file, but it works: by the time it finds the name
libkludge.a, the linker has already loaded the object file crt0.o (see Chapter 21, Object files
and friends, page 368), and is looking for a symbol main. It doesn’t care whether it finds it in
an object file or a library file.

Modifying Makefiles
Frequently enough, you find that the Makefile is inadequate. Targets are missing, or some
error occurs that is almost untraceable: you need to fix the Makefile. Before you do this, you
should check whether you are changing the correct Makefile. Some packages build a new
Makefile ev ery time you run make. In particular, you frequently see Makefiles that start with
text like

Makefile generated by imake - do not edit!

You can follow this advice or not: it depends on you and what you are doing: If you are just
trying to figure out what the Makefile is trying (and presumably failing) to do, it’s nice to
know that you can subsequently delete your modified Makefile and have it automatically
remade.

Once you have found out why the Makefile is doing what it is, you need to fix the source of
the Makefile. This is not usually too difficult: the input files to the Makefile generation phase
typically don’t look too different from the finished Makefile. For example, Makefile.in in the
GNU packages is a skeleton that is processed by m4, and except for the m4 parameters Make-
file.in looks very similar to the finished Makefile. Finding the way back to the Imakefile from
the Makefile requires a little more understanding of the imake process, but with a little practice
it’s not that difficult.

* If you are on a network with other machines with more modern file systems, you could work around
this problem by placing the files on the other system and accessing them via NFS.

5 February 2005 02:09

