
File systems

UNIX owes much of its success to the simplicity and flexibility of the facilities it offers for
file handling, generally called the file system. This term can have two different meanings:

1. It can be a part of a disk or floppy which can be accessed as a collection of files. It
includes regular files and directories. A floppy is usually a single file system, whereas a
hard disk can be partitioned into several file systems and possibly also non-file system
parts, such as swap space and bad track areas.

2. It can be the software in the kernel which accesses the file systems above.

UNIX has a single file hierarchy, unlike MS-DOS, which uses a separate letter for each file
system (A: and B: for floppies, C: to Z: for local and network accessible disks). MS-DOS
determines the drive letter for the file systems at boot time, whereas UNIX only determines
the location of the root file system / at boot time. You add the other file systems to the direc-
tory tree by mounting them:

$ mount /dev/usr /usr

This mounts the file system on the disk partition /dev/usr onto the directory /usr, so if the root
directory of /dev/usr contains a file called foo, after mounting you can access it as /usr/foo.

Anything useful is bound to attract people who want to make it more useful, so it should come
as no surprise that a large number of “improvements” have been made to the file system in the
course of time. In the rest of this chapter, we’ll look at the following aspects in more detail:

• File systems introduced since the Seventh Edition.

• Differences in function calls, starting on page 206.

• Non-blocking I/O, starting on page 220.

• File locking, starting on page 226.

• Memory-mapped files, starting on page 232.

203

5 February 2005 02:09

204

File system structures
The original Seventh Edition file system is—at least in spirit—the basis for all current file
system implementations. All UNIX file systems differ in one important point from almost all
non-UNIX file systems:

• At the lowest level, the file system refers to files by numbers, so-called inodes. These are
in fact indices in the inode table, a part of the file system reserved for describing files.

• At a higher level, the directory system enables a file to be referred to by a name. This
relationship between a name and an inode is called a link, and it enables a single file to
have multiple names.

One consequence of this scheme is that it is normally not possible to determine the file name
of an open file.

The Seventh Edition file system is no longer in use in modern systems, though the System V
file system is quite similar. Since the Seventh Edition, a number of new file systems have
addressed weaknesses of the old file system:

• New file types were introduced, such as symbolic links, fifos and sockets.

• The performance was improved.

• The reliability was increased significantly.

• The length of the file names was increased.

We’ll look briefly at some of the differences in the next few sections.

The Berkeley Fast File System
The first alternative file system to appear was the Berkeley Fast File System, (FFS), now
called the Unix File System (ufs).* It is described in detail in A Fast File System for UNIX, by
Kirk McKusick, Bill Joy, Sam Leffler and Robert Fabry, and The Design and the Implementa-
tion of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels, and
John Quarterman. Its main purpose was to increase speed and storage efficiency. Compared
to the Seventh Edition file system, the following differences are relevant to porting software:

• The maximum file name size was increased from 14 to 255 characters.

• The size of the inode number was increased from 16 to 32 bits, thus allowing an effec-
tively unlimited number of files.

• Symbolic links were introduced.

A symbolic link differs from a normal link in that it points to another file name, and not an
inode number.

* Don’t confuse the Berkeley FFS with SCO’s afs, which is sometimes referred to as a Fast File System.
In fact, afs is very similar to s5fs, though later versions have symbolic links and longer file names.

5 February 2005 02:09

Chapter 14: File systems 205

Symbolic links

A symbolic link is a file whose complete contents are the name of another file. To access via
a symbolic link, you first need to find the directory entry to which it is pointing, then resolve
the link to the inode. By contrast, a traditional link (sometimes called hard link) links a file
name to an inode. Several names can point to the same inode, but it only takes one step to
find the file. This seemingly minor difference has a number of consequences:

• A definite relationship exists between the original file and the symbolic link. In a normal
link, each of the file names have the same relationship to the inode; in a symbolic link,
the symbolic link name refers to the main file name. This difference is particularly obvi-
ous if you remove the original file: with a normal link, the other name still works per-
fectly. With a symbolic link, you lose the file.

• There’s nothing to stop a symbolic link from pointing to another symbolic link—in fact,
it’s quite common, and is moderately useful. It also opens the possibility of looping: if
the second symbolic link points back to the first, the system will give up after a few itera-
tions with the error code ELOOP.

• Symbolic links have two file permissions. In practice, the permission of the link itself is
of little consequence—normally it is set to allow reading, writing and execution for all
users (on an ls -l listing you see lrwxrwxrwx). The permission that counts is still the
permission of the original file.

• Symbolic links allow links to different file systems, even (via NFS) to a file system on a
different machine. This is particularly useful when using read-only media, such as CD-
ROMs. See Chapter 3, Care and feeding of source trees, page 39, for some examples.

• Symbolic links open up a whole new area of possible errors. It’s possible for a symbolic
link to point to a file that doesn’t exist, so you can’t access the file, even if you have a
name and the correct permissions.

Other file systems
Other file systems have emerged since ufs, including:

• The System V file system, s5fs, a minor evolution of the Seventh Edition File system with
some performance and stability modifications, and without multiplexed files. Even in
System V, ufs has replaced it. For all practical purposes, you can consider it to be obso-
lete.

• The Veritas File System, vxfs and the Veritas Journalling File system, vjfs. From the
point of view of porting, they are effectively compatible with ufs.

• The Network File System, NFS,* a method of sharing file systems across networks. It
allows a system to mount file systems connected to a different machine. NFS runs on

* People just don’t seem to be able to agree whether to write file system names in upper case (as befits
an abbreviation), or in lower case (the way most mount commands want to see them). It appears that
NFS is written in upper case more frequently than the other names.

5 February 2005 02:09

206

just about any system, including System V.3 and DOS, but unfortunately not XENIX. It
can offer a partial escape from the “14 character file limit, no symlinks” syndrome. It is
reasonably transparent, but unfortunately does not support device files.

• Remote File Sharing, rfs. This is AT&T’s answer to NFS. Although it has a number of
advantages over NFS, it is not widely used.

Along with new file systems, new file types have evolved. We hav e already looked at sym-
bolic links, which we can think of as a new file type. Others include FIFOs (First In First
Out) and sockets, means of interprocess communications that we looked at in Chapter 12, Ker-
nel dependencies.

In practice, you run into problems only when you port software developed under ufs, vjfs or
vxfs to a s5fs system. If you can, you should change your file system. If you can’t do that,
here are some of the things that could give you headaches:

• File name length. There’s very little you can do about this: if the file names are longer
than your kernel can understand, you have to change them. There are some subtle prob-
lems here: some 14-character file systems accept longer names and just silently truncate
them, others, notably SCO, signal an error. It should be fairly evident what your file sys-
tem does when you try to do it. If your system has the pathconf system call, you can
also interrogate this programmatically (see page 212).

• Lack of symbolic links is another big problem. You may need far-reaching source
changes to get around this problem, which could bite you early on in the port: you may
have an archive containing symbolic links, or the configuration routines might try to cre-
ate them.

Another, more subtle difference is that BSD and System V do not agree on the question of
group ownership. In particular, when creating a file, the group ownership may be that of the
directory, or it may be that of the process that creates the file. BSD always gives the file the
group of the directory; in System V.4, it is the group of the process, unless the “set group ID”
bit is set in the directory permissions, in which case the file will belong to the same group as
the directory.

Function calls
The Seventh Edition left a surprising amount of functionality up to the system library. For
example, the kernel supplied no method to create a directory or rename a file. The methods
that were used to make up for these deficiencies were not always reliable, and in the course of
the time these functions have been implemented as system calls. Current systems offer the
following functions, some of them system calls:

chsize
chsize changes the end of file of an open file.

5 February 2005 02:09

Chapter 14: File systems 207

int chsize (int fd, long size);

It originated in XENIX and has been inherited by System V.3.2 and System V.4. It corre-
sponds both in function and in parameters to the System V version of ftruncate: if the new
end-of-file pointer is larger than the current end-of-file pointer, it will extend the file to the
new size.

dup2
All systems offer the system call dup, which creates a copy of a file descriptor:

int dup (int oldd);

oldd is an open file descriptor; dup returns another file descriptor pointing to the same file.
The problem with dup is that you don’t hav e any control over the number you get back: it’s
the numerically smallest file descriptor currently not in use. In many cases, you want a spe-
cific number. This is what dup2 does:

int dup2 (int oldd, int newd);

With newd you specify the number of the new descriptor. If it’s currently allocated, dup2
closes it first. You can fake this with dup, but it’s painful. The F_DUPFD subfunction of
fcntl does the same thing as dup2, so you can use it if it is available (see page 208). dup2 is
available on nearly every UNIX system, including the Seventh Edition. Somehow some ear-
lier versions of System V don’t hav e it, however—recall that System V derived from the
Sixth Edition, not the Seventh Edition. See Chapter 1, Introduction, page 4.

fchdir and friends
Various systems offer functions with names like fchdir, fchmod, fchown, and fchroot.
These are effectively the same as the corresponding functions chdir, chmod, chown, and
chroot, except they take the number of an open file instead of its name. For example:

#include <sys/stat.h>

int chmod (const char *path, mode_t mode);
int fchmod (int fd, mode_t mode);

You can replace them with a corresponding call to ch* if you know the name of the file asso-
ciated with the file descriptor; otherwise you could be in trouble.

fcntl
All modern versions of UNIX supply a function called fcntl, which is rather like an ioctl
for disk files:

#include <sys/fcntl.h>

int fcntl (int fd, int cmd, union anything arg);

5 February 2005 02:09

208

Table 14-1 shows common command values.

Table 14−1: fcntl commands

Command System Meaning

F_DUPFD all Duplicate a file descriptor, like dup. Return the lowest num-
bered descriptor that is higher than the int value arg.

F_GETFD all Get the close-on-exec flag associated with fd.

F_SETFD all Set the close-on-exec flag associated with fd.

F_FREESP SVR4,
Solaris
2.X

Free storage space associated with a section of the file fd. See
the section on file locking on page 230 for more details.

F_GETFL all Get descriptor status flags (see below).

F_SETFL all Set descriptor status flags to arg.

F_GETOWN BSD Get the process ID or the complement of the process group cur-
rently receiving SIGIO and SIGURG signals.

F_GETOWN SVR4 Get the user ID of the owner of the file. This function is not
documented for Solaris 2.X.

F_SETOWN BSD Set the process or process group to receive SIGIO and SIGURG
signals. If arg is negative, it is the complement of the process
group. If it is positive, it is a process ID.

F_SETOWN SVR4 Set the user ID of the owner of the file. This function is not doc-
umented for Solaris 2.X.

F_GETLK all Get file record lock information. See the section on locking on
page 226, for more details.

F_SETLK all Set or clear a file record lock.

F_SETLKW all Set or clear a file record lock, waiting if necessary until it be-
comes available.

F_CHKFL SVR3 Check legality of file flag changes.

F_RSETLK SVR4 Used by lockd to handle NFS locks.

F_RSETLKW SVR4 Used by lockd to handle NFS locks.

F_RGETLK SVR4 Used by lockd to handle NFS locks.

As you can see from the table, arg is not always supplied, and when it is, its meaning and
type vary depending on the call.

A couple of these functions deserve closer examination:

5 February 2005 02:09

Chapter 14: File systems 209

• F_SETFD and F_GETFD manipulate the close on exec flag. This is normally defined in
sys/fcntl.h as 1. Many programs use the explicit constant 1, which is theoretically non-
portable, but which works with current systems.

By default, exec inherits open files to the new program. If the close on exec flag is set,
exec automatically closes the file.

• F_GETOWN and F_SETOWN have very different meanings for BSD and System V.4. In
BSD, they get and set the process ID that receives SIGIO and SIGURG signals; in System
V.4, they get and set the file owner, which can also be done with stat or fstat. There
is no direct equivalent to the BSD F_SETOWN and F_GETOWN in System V, since the
underlying implementation of non-blocking I/O is different. Instead, you call ioctl
with the I_SETSIG request — see page 225 for more details.

• The request F_CHKFL is defined in the System V.3 header files, but it is not documented.

• F_GETFL and F_SETFL get and set the file status flags that were initally set by open. Ta-
ble 14-2 shows the flags.

Table 14−2: fcntlfile status flags

Flag System Meaning

O_NONBLOCK all Do not block if the operation cannot be performed immediate-
ly. Instead, the read or write call returns -1 with errno set
to EWOULDBLOCK.

O_APPEND all Append each write to the end of file.

O_ASYNC BSD Send a SIGIO signal to the process group when I/O is possi-
ble.

O_SYNC System V write waits for writes to complete before returning.

O_RDONLY System V Open for reading only.

O_RDWR System V Open for reading and writing.

O_WRONLY System V Open for writing only.

getdents and getdirentries
getdents (System V.4) and getdirentries (BSD) are marginally compatible system calls
that read a directory entry in a file-system independent format. Both systems provide a header
file /usr/include/sys/dirent.h, which defines a struct dirent, but unfortunately the struc-
tures are different. In System V, the structure and the call are:

struct dirent
{
ino_t d_ino;
off_t d_off;

5 February 2005 02:09

210

unsigned short d_reclen;
char d_name[1];
};

int getdents(int fd, struct dirent *buf, size_t nbyte);

getdirentries is the corresponding BSD system call:

struct dirent
{
unsigned long d_fileno; /* "file number" (inode number) of entry */
unsigned short d_reclen; /* length of this record */
unsigned short d_namlen; /* length of string in d_name */
char d_name[MAXNAMLEN + 1]; /* name must be no longer than this */

};

int getdirentries(int fd, char *buf, int nbytes, long *basep);

Because of these compatibility problems, you don’t normally use these system calls
directly — you use the library call readdir instead. See the description of readdir on page
213 for more information.

getdtablesize
Sometimes it’s important to know how many files a process is allowed to open. This depends
heavily on the kernel implementation: some systems have a fixed maximum number of files
that can be opened, and may allow you to specify it as a configuration parameter when you
build a kernel. Others allow an effectively unlimited number of files, but the kernel allocates
space for files in groups of about 20. Evidently, the way you find out about these limits
depends greatly on the system you are running:

• On systems with a fixed maximum, the constant NOFILE, usually defined in
/usr/include/sys/param.h, specifies the number of files you can open.

• On systems with a configurable maximum, you will probably also find the constant
NOFILE, only you can’t rely on it to be correct.

• On some systems that allocate resources for files in groups, the size of these groups may
be defined in /usr/include/sys/filedesc.h as the value of the constant NDFILE.

• BSD systems offer the function getdtablesize (no parameters) that returns the maxi-
mum number of files you can open.

• Modern systems offer the getrlimit system call, which allows you to query a number
of kernel limits. See Chapter 12, Kernel dependencies, page 169, for details of getr-
limit.

5 February 2005 02:09

Chapter 14: File systems 211

ioctl
ioctl is a catchall function that performs functions that weren’t thought of ahead of time.
Every system has its own warts on ioctl, and the most common problem with ioctl is a call
with a request that the kernel doesn’t understand. We can’t go into detail about every ioctl
function, but we do examine terminal driver ioctl calls in some depth in Chapter 15, Terminal
drivers, starting on page 252.

lstat
lstat is a version of stat. It is identical to stat unless the pathname specifies a symbolic
link. In this case, lstat returns information about the link itself, whereas stat returns infor-
mation about the file to which the link points. BSD and System V.4 support it, and it should
be available on any system that supports symbolic links.

ltrunc
ltrunc truncates an open file in the same way that ftruncate does, but the parameters are
more reminiscent of lseek:

int ltrunc (int fd, off_t offset, int whence);

fd is the file descriptor. offset and whence specify the new end-of-file value:

• If whence is SEEK_SET, ltrunc sets the file size to offset.

• If whence is SEEK_CUR, ltrunc sets the file size to offset bytes beyond the current
seek position.

• If whence is SEEK_END, ltrunc increases the file size by offset.

No modern mainstream system supports ltrunc. You can replace a call ltrunc (fd, off-
set, SEEK_SET) with ftruncate (fd, offset). If you have calls with SEEK_CUR and
SEEK_END, you need to first establish the corresponding offset with a call to lseek:

ftruncate (fd, lseek (fd, offset, SEEK_CUR)); or SEEK_END

mkdir and rmdir
Older versions of UNIX did not supply a separate system call to create a directory; they used
mknod instead. Unfortunately, this meant that only the superuser could create directories.
Newer versions supply mkdir and rmdir. The syntax is:

#include <sys/stat.h>
int mkdir (const char *path, mode_t mode)

#include <unistd.h>
int rmdir (const char *path)

If your system does not have the mkdir system call, you can simulate it by invoking the

5 February 2005 02:09

212

mkdir utility with the library function system.

open
Since the Seventh Edition, open has acquired a few new flags. All modern versions of UNIX
support most of them, but the following differ between versions:

• O_NDELAY is available only in earlier versions of System V. It applies to devices and
FIFOs (see Chapter 12, Kernel dependencies, page 165, for more information on FIFOs)
and specifies that both the call to open and subsequent I/O calls should return immedi-
ately without waiting for the operation to complete. A call to read returns 0 if no data is
available, which is unfortunately also the value returned at end-of-file. If you don’t hav e
O_NDELAY, or if this ambiguity bugs you, use O_NONBLOCK.

• O_NONBLOCK specifies that both the call to open and subsequent I/O calls should return
immediately without waiting for completion. Unlike O_NDELAY, a subsequent call to
read returns -1 (error) if no data is available, and errno is set to EAGAIN.

• System V.4 and 4.4BSD have a flag, called O_SYNC in System V.4 and O_FSYNC in
4.4BSD, which specifies that each call to write write should write any buffered data to
disk and update the inode. Control does not return to the program until these operations
complete. If your system does not support this feature, you can probably just remove it,
though you lose a little bit of security. To really do the Right Thing, you can include a
call to fsync after every I/O.

pathconf and fpathconf
pathconf and fpathconf are POSIX.1 functions that get configuration information for a file
or directory:

#include <unistd.h>
long fpathconf (int fd, int name);
long pathconf (const char *path, int name);

The parameter name is an int, not a name. Despite what it is called, it specifies the action to
perform:

Table 14−3: pathconf actions

name Function

_PC_LINK_MAX Return the maximum number of links that can be made to an
inode.

_PC_MAX_CANON For terminals, return the maximum length of a formatted in-
put line.

_PC_MAX_INPUT For terminals, return the maximum length of an input line.
_PC_NAME_MAX For directories, return the maximum length of a file name.

5 February 2005 02:09

Chapter 14: File systems 213

Table 14−3: pathconf actions (continued)

name Function

_PC_PATH_MAX Return the maximum length of a relative path name starting
with this directory.

_PC_PIPE_BUF For FIFOs, return the size of the pipe buffer.
_PC_CHOWN_RESTRICTED return TRUE if the chown system call may not be used on this

file. If fd or path refer to a directory, then this information
applies to all files in the directory.

_PC_NO_TRUNC return TRUE if an attempt to create a file with a name longer
than the maximum in this directory would fail with ENAME-
TOOLONG.

_PC_VDISABLE For terminals, return TRUE if special character processing can
be disabled.

read
The function read is substantially unchanged since the Seventh Edition, but note the com-
ments about O_NDELAY and O_NONBLOCK in the section about open on page 212.

rename
Older versions of UNIX don’t hav e a system call to rename a file: instead, they make a link
and then delete the old file. This can cause problems if the process is stopped in the middle of
the operation, and so the atomic rename function was introduced. If your system doesn’t
have it, you can still do it the old-fashioned way.

revoke
revoke is used in later BSD versions to close all file descriptors associated with a special file,
ev en those opened by a different process. It is not available with System V.4. Typically, this
call is used to disconnect serial lines.

After a process has called revoke, a call to read on the device from any process returns an
end-of-file indication, a call to close succeeds, and all other calls fail. Only the file owner
and the super user may use this call.

readdir and friends
In the Seventh Edition, reading a directory was simple: directory entries were 16 bytes long
and consisted of a 2-byte inode number and a 14 byte file name. This was defined in a
struct direct:

struct direct
{
ino_t d_ino;
char d_name[DIRSIZ];

5 February 2005 02:09

214

};

With the introduction of ufs, which supports names of up to 256 characters, it was no longer
practical to reserve a fixed-length field for the file name, and it became more difficult to access
directories. A family of directory access routines was introduced with 4.2BSD:

#include <sys/types.h>
#include <dirent.h>
DIR *opendir (const char *filename);
struct dirent *readdir (DIR *dirp);
long telldir (const DIR *dirp);
void seekdir (DIR *dirp, long loc);
void rewinddir (DIR *dirp);
int closedir (DIR *dirp);
int dirfd (DIR *dirp);

Along with the DIR type, there is a struct dirent that corresponds to the Seventh Edition
struct direct. Unfortunately, System V defines struct dirent and DIR differently
from the original BSD implementation. In BSD, it is

struct dirent /* directory entry */
{
unsigned long d_fileno; /* file number of entry */
unsigned short d_reclen; /* length of this record */
unsigned short d_namlen; /* length of string in d_name */
char d_name [255 + 1]; /* maximum name length */
};

/* structure describing an open directory. */
typedef struct _dirdesc
{
int dd_fd; /* directory file descriptor */
long dd_loc; /* offset in current buffer */
long dd_size; /* amount of data from getdirentries */
char *dd_buf; /* data buffer */
int dd_len; /* size of data buffer */
long dd_seek; /* magic cookie from getdirentries */
} DIR;

System V defines

struct dirent
{
ino_t d_ino; /* inode number of entry */
off_t d_off; /* offset of directory entry */
unsigned short d_reclen; /* length of this record */
char d_name [1]; /* name of file */
};

typedef struct
{
int dd_fd; /* file descriptor */
int dd_loc; /* offset in block */
int dd_size; /* amount of valid data */

5 February 2005 02:09

Chapter 14: File systems 215

char *dd_buf; /* directory block */
} DIR; /* stream data from opendir() */

There are a number of ugly incompatibilities here:

• The field d_fileno in the BSD dirent struct is not a file descriptor, but an inode num-
ber. The System V name d_ino makes this fact clearer, but it introduces a name incom-
patiblity.

• A number of the BSD fields are missing in the System V structures. You can calculate
dirent.d_namlen by subtracting the length of the other fields from
dirent.d_reclen. For example, based on the System V dirent structure above:

d_namlen = dirent.d_reclen
- sizeof (ino_t) /* length of the d_ino field */
- sizeof (d_off) /* length of the d_off field */
- sizeof (unsigned short); /* length of the d_reclen field */

System V.4 has two versions of these routines: a System V version and a BSD version. Many
reports have claimed that the BSD version is broken, though it’s possible that the program-
mers were using the wrong header files. If you do run into trouble, you should make sure the
header files match the flavour of dirent and DIR that you have.

readv and writev
readv and writev perform a so-called scatter read and gather write. These functions are
intended to write to a file a number of pieces of data spread in memory, or to read from a file
to a number of places.

#include <unistd.h>
#include <sys/types.h>
#include <sys/uio.h>
in sys/uio.h is the definition:
struct iovec
{
caddr_t iov_base;
int iov_len;
};

int readv(int d, struct iovec *iov, int iovcnt);
int writev (int d, struct iovec *iov, int iovcnt);

Each iovec element specifies an address and the number of bytes to transfer to or from it.
The total number of bytes transferred would be the sum of the iov_len fields of all iovcnt
elements. readv and writev are available only for BSD and System V.4 systems—if you
don’t hav e them, it’s relatively easy to fake them in terms of read or write. The reasons
why these calls exist at all are:

• Some devices, such as tape drives, write a physical record for each call to write. This
can result in a significant drop in performance and tape capacity.

5 February 2005 02:09

216

• For tape drives, the only alternative is to copy the data into one block before writing.
This, too, impacts performance, though not nearly as much as writing smaller blocks.

• Even for devices that don’t write a physical block per write, it’s faster to do it in the
kernel with just a single function call: you don’t hav e as many context switches.

statfs and statvfs
statfs or statvfs return information about a file system in a format referred to as a generic
superblock. All current UNIX versions supply one or the other of these functions, but the
information they return varies greatly. XENIX, System V.3, BSD, and BSD-derived SunOS
operating systems supply statfs. System V.4 supplies statvfs.

BSD systems define statfs like this:

typedef quad fsid_t;

#define MNAMELEN 32 /* length of buffer for returned name */

struct statfs
{
short f_type; /* type of filesystem (see below) */
short f_flags; /* copy of mount flags */
long f_fsize; /* fundamental file system block size */
long f_bsize; /* optimal transfer block size */
long f_blocks; /* total data blocks in file system */
long f_bfree; /* free blocks in fs */
long f_bavail; /* free blocks avail to non-superuser */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */
fsid_t f_fsid; /* file system id */
long f_spare[6]; /* spare for later */
char f_mntonname[MNAMELEN]; /* mount point */
char f_mntfromname[MNAMELEN]; /* mounted filesystem */
};

SunOS 4.1.3 defines them as:

#include <sys/vfs.h>

typedef struct
{
long val[2];
} fsid_t;

struct statfs
{
long f_type; /* type of info, zero for now */
long f_bsize; /* fundamental file system block size */
long f_blocks; /* total blocks in file system */
long f_bfree; /* free blocks */
long f_bavail; /* free blocks available to non-super-user */
long f_files; /* total file nodes in file system */
long f_ffree; /* free file nodes in fs */

5 February 2005 02:09

Chapter 14: File systems 217

fsid_t f_fsid; /* file system id */
long f_spare[7]; /* spare for later */
};

System V.3 and XENIX define:

struct statfs
{
short f_fstyp; /* File system type */
long f_bsize; /* Block size */
long f_frsize; /* Fragment size (if supported) */
long f_blocks; /* Total number of blocks on file system */
long f_bfree; /* Total number of free blocks */
long f_files; /* Total number of file nodes (inodes) */
long f_ffree; /* Total number of free file nodes */
char f_fname[6]; /* Volume name */
char f_fpack[6]; /* Pack name */
};

int statfs (const char *path, struct statfs *buf);
int fstatfs (int fd, struct statfs *buf);

System V.4 and Solaris 2.X use statvfs, which is defined as

#include <sys/types.h>
#include <sys/statvfs.h>

struct statvfs
{
u_long f_bsize; /* preferred file system block size */
u_long f_frsize; /* fundamental filesystem block size */
u_long f_blocks; /* total # of blocks on file system */
u_long f_bfree; /* total # of free blocks */
u_long f_bavail; /* # of free blocks available */
u_long f_files; /* total # of file nodes (inodes) */
u_long f_ffree; /* total # of free file nodes */
u_long f_favail; /* # of inodes available */
u_long f_fsid; /* file system id (dev for now) */
char f_basetype [FSTYPSZ]; /* target fs type name */
u_long f_flag; /* bit mask of flags */
u_long f_namemax; /* maximum file name length */
char f_fstr [32]; /* file system specific string */
u_long f_filler [16]; /* reserved for future expansion */
};

#define ST_RDONLY 0x01 /* read-only file system */
#define ST_NOSUID 0x02 /* does not support setuid/setgid */
#define ST_NOTRUNC 0x04 /* does not truncate long file names */

int statvfs (const char *path, struct statvfs *buf);
int fstatvfs (int fd, struct statvfs *buf);

There’s not much to say about these functions: if you have problems, hopefully this informa-
tion will help you figure out what the author intended.

5 February 2005 02:09

218

symlink
symlink creates a symbolic link in file systems that support symbolic links:

#include <unistd.h>

int symlink (const char *real_name, const char *symbolic_name);

A symbolic link symbolic_name is created to the name real_name.

sysfs
sysfs is a System V function that returns information about the kinds of file systems config-
ured in the system. This function has the rather strange property of not being compatible with
ANSI C—the parameters it accepts depend on the function supplied:

#include <sys/fstyp.h>
#include <sys/fsid.h>

int sysfs ((int) GETFSIND, const char *fsname);

This call translates fsname, a null-terminated file-system type identifier, into a file-system
type index.

int sysfs ((int) GETFSTYP, int fs_index, char *buf);

This call translates fs_index, a file-system type index, into a NUL-terminated file-system type
identifier in the buffer pointed to by buf.

int sysfs((int) GETNFSTYP);

This call returns the total number of file system types configured in the system.

truncate and ftruncate
These functions set the EOF pointer of a file. truncate finds the file via its file name, and
ftruncate requires the file number of an open file.

#include <unistd.h>
int truncate (const char *path, off_t length);
int ftruncate (int fd, off_t length);

These functions are available with BSD and System V.4. There is a subtle difference between
the way the BSD and System V.4 versions work: if the file is smaller than the requested
length, System V.4 extends the file to the specified length, while BSD leaves it as it is. Both
versions discard any data beyond the end if the current EOF is longer.

If your system doesn’t hav e these functions, you may be able to perform the same function
with chsize (page 206) or the fcntl function F_FREESP (page 208).

5 February 2005 02:09

Chapter 14: File systems 219

ustat
ustat returns information about a mounted file system, and is supported by System V and
SunOS 4, but not by BSD. The call is:

struct ustat
{
daddr_t f_tfree; /* Total blocks available */
ino_t f_tinode; /* Number of free inodes */
char f_fname [6]; /* File system name */
char f_fpack [6]; /* File system pack name */

int ustat (dev_t dev, struct ustat *buf);

On BSD systems, you can get this information with the statfs system call, which requires a
path name instead of a device number.

utime and utimes
utime is available in all versions of UNIX.

#include <sys/types.h>
#include <utime.h>

int utime (const char *path, const struct utimbuf *times);

utime sets the modification timestamp of the file defined by path to the time specified in
times. In the Seventh Edition, times was required to be a valid pointer, and only the file
owner or root could use the call. All newer versions of UNIX allow times to be a NULL
pointer, in which case the modification timestamp is set to the current time. Any process that
has write access to the file can use utime in this manner. BSD implements this function in
the C library in terms of the function utimes:

#include <sys/time.h>
sys/time.h defines:
struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};
int utimes (const char *file, const struct timeval *times);

#include <sys/types.h>
#include <utime.h>
utime.h defines:
struct utimbuf
{
time_t actime; /* access time */
time_t modtime; /* modification time */
};

int utime (char *path, struct utimbuf *times);

5 February 2005 02:09

220

The difference between utime and utimes is simply in the format of the access time: utime
supplies the time in time_t format, which is accurate to a second, whereas utimes uses the
timeval struct which is (theoretically) accurate to one microsecond. BSD systems supply
the utime function as a library call (which, not surprisingly, calls utimes). On XENIX and
early System V systems you can fake utimes using utime.

Non-blocking I/O
In early versions of UNIX, all device I/O was blocking: if you made a call to read and no
data was available, or if you made a call to write and the device wasn’t ready to accept the
data, the process would sleep until the situation changed. This is still the default behaviour.

Blocking I/O can be restrictive in many situations, and many schemes have been devised to
allow a process to continue execution before the I/O operation completes. On current sys-
tems, you select non-blocking I/O either by supplying the flag O_NONBLOCK to open, or by
calling the fcntl function F_SETFL with the O_NONBLOCK flag (see page 209).

One problem with non-blocking I/O is that you don’t automatically know when a request is
complete. In addition, if you have multiple requests outstanding, you may not really care
which finishes first, you just want to know when one finishes.

Tw o approaches have been used to inform a process when a request completes. One is to call
a function that returns information about current request status, and that may optionally block
until something completes. Traditionally, BSD uses select to perform this function,
whereas System V uses poll.

The other solution is to send a signal (SIGPOLL in System V, SIGIO or SIGURG in BSD) when
the request finishes. In both systems, this has the disadvantage of not supplying any informa-
tion about the request that completed, so if you have more than one request outstanding, you
still need to call select or poll to handle the situation.

select
select is called with the following parameters:

#define FD_SETSIZE 512 my maximum FD count, see below
#include <unistd.h>
#include <sys/types.h>
#include <sys/time.h>

These header files define the structs:

typedef struct fd_set
{
fd_mask fds_bits [howmany (FD_SETSIZE, NFDBITS)];
} fd_set;

struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

5 February 2005 02:09

Chapter 14: File systems 221

};

int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout);

The parameters readfds, writefds, and exceptfds are bit maps, one bit per possible file
descriptor. Recall that file descriptors are small non-negative integers. select uses the file
descriptor as an index in the bit map.

This gives us a problem when porting: we don’t know how many files our implementation
supports. In modern systems, there is usually no fixed limit. The solution chosen is a kludge:
“choose a sufficiently high number”. The expression howmany (FD_SETSIZE, NFDBITS)
evaluates to the number of words of NFDBITS required to store FD_SETSIZE bits:

#define howmany(bits, wordsize) ((bits + wordsize - 1) / wordsize)

In 4.4BSD FD_SETSIZE defaults to 256 (in sys/types.h). Nowadays, a server with many
requestors could quite easily exceed that value. Because of this, you can set it yourself: just
define FD_SETSIZE before including /usr/include/sys/types.h, as indicated in the syntax over-
view above.

Setting variables of type fd_mask is tricky, so a number of macros are supplied:

FD_SET (fd, &fdset) /* set bit fd in fdset*/
FD_CLR (fd, &fdset) /* clear bit fd in fdset */
FD_ISSET (fd, &fdset) /* return value of bit fd in fdset */
FD_ZERO (&fdset) /* clear all bits in fdset */

select examines the files specified in readfds for read completion, the files specified in
writefds for write completion and the files specified in exceptfds for exceptional condi-
tions. You can set any of these pointers to NULL if you’re not interested in this kind of event.
The action that select takes depends on the value of timeout:

• If timeout is a NULL pointer, select blocks until a completion occurs on one of the
specified files.

• If both timeout->tv_sec and timeout->tv_usec are set to 0, select checks for
completions and returns immediately.

• Otherwise select waits for completion up to the specified timeout.

select returns -1 on error conditions, and the number of ready descriptors (possibly 0) other-
wise. It replaces the contents of readfds, writefds, and exceptfds with bit maps indicat-
ing which files had a corresponding completion.

So far, we hav en’t even mentioned nfds. Strictly speaking, it’s not needed: you use it to indi-
cate the number of file descriptors that are worth examining. By default, open and dup allo-
cate the lowest possible file descriptors, so select can save a lot of work if you tell it the
highest file number that is worth examining in the bit maps. Since file descriptors start at 0,
the number of file descriptors is 1 higher than the highest file descriptor number.

This baroque function has a couple of other gotchas waiting for you:

5 February 2005 02:09

222

• The state of readfds, writefds, and exceptfds is undefined if select returns 0 or
-1. System V clears the descriptors, whereas BSD leaves them unchanged. Some Sys-
tem V programs check the descriptors even if 0 is returned: this can cause problems if
you port such a program to BSD.

• The return value is interpreted differently in BSD and System V. In BSD, each comple-
tion event is counted, so you can have up to 3 completions for a single file. In System V,
the number of files with completions is returned.

• On completion without timeout, Linux decrements the value of timeout by the time
elapsed since the call: if timeout was initially set to 30 seconds, and I/O completes after
5 seconds, the value of timeout on return from select will be 25 seconds. This can be
of use if you have a number of outstanding requests, all of which must complete in a cer-
tain time: you can call select again for the remaining file descriptors without first cal-
culating how much time remains.

In Linux, this feature can be disabled by setting the STICKY_TIMEOUTS flag in the
COFF/ELF personality used by the process. Other versions of UNIX do not currently
suppport this feature, although both System V and BSD suggest that it will be imple-
mented. For example, the man pages for 4.4BSD state:

Select() should probably return the time remaining from the original timeout, if any, by modi-
fying the time value in place. This may be implemented in future versions of the system.
Thus, it is unwise to assume that the timeout value will be unmodified by the select() call.

If you find a system without select that does support poll, you can probably replace
select with poll—it’s just a SMOP.*

Typical use of select

Programs which use select generally start a number of I/O transfers and then go to some
central place to wait for something to happen. The code could look like:

if (select (maxfnum, /* number of files to check */
&readfds, /* mask of read completions */
&writefds, /* mask of write completions */
&exceptfds, /* mask of exception completions */
NULL) > 0) /* no timeout */

{ /* we have completions, */
int fd;
for (fd = 0; fd < maxfnum; fd++)
{
if (FD_ISSET (fd, readfds)) /* this file has a read completion */
read_completion (fd); /* process it */

if (FD_ISSET (fd, writefds)) /* this file has a write completion */
write_completion (fd); /* process it */

if (FD_ISSET (fd, exceptfds)) /* this file has a exception completion */

* To quote the New Hacker’s Dictionary: SMOP: /S-M-O-P/ [Simple (or Small) Matter of Program-
ming] n. 2. Often used ironically . . . when a suggestion for a program is made which seems easy to
the suggester, but is obviously (to the victim) a lot of work.

5 February 2005 02:09

Chapter 14: File systems 223

exception_completion (fd); /* process it */
}

As we saw above, FD_ISSET is a macro which checks if bit fd is set in the bit mask. The
foo_completion functions do whatever is needed on completion of I/O for this file descrip-
tor. See Advanced Programming in the UNIX environment, by Richard Stevens, for further
information.

poll
poll takes a different approach from select:

#include <stropts.h>
#include <poll.h>

... in poll.h is the definition
struct pollfd
{
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
};

int poll (struct pollfd *fds, unsigned long nfds, int timeout);

For each file of interest, you set up a pollfd element with the file number and the events of
interest. events and revents are again bit maps. events can be made up of the following
values:

Table 14−4: poll ev ent codes

Event Meaning

POLLIN Data other than high priority data is available for reading.
POLLRDNORM Normal data* (priority band = 0) is available for reading.
POLLRDBAND Data from a non-zero priority band is available for reading.
POLLPRI High priority data is available for reading.
POLLOUT Normal data may be written without blocking.
POLLWRNORM The same as POLLOUT: normal data may be written without blocking.
POLLWRBAND Priority data (priority band > 0) may be written without blocking.

When it succeeds, poll sets the corresponding bits in revents to indicate which events

* STREAMS recognizes 256 different data priority bands. Normal data is sent with priority band 0, but
urgent data with a higher priority can "leapfrog" normal data. See UNIX Network Programming, by W.
Richard Stevens, for further information.

5 February 2005 02:09

224

occurred. In addition, it may set the following event bits:

Table 14−5: poll result codes

Event Meaning

POLLERR An error has occurred on the device or stream.
POLLHUP A hangup has occurred.
POLLNVAL The specified fd is not open.

Timeout processing is nearly the same as for select, but the parameter timeout is specified
in milliseconds. Since it is an int, not a pointer, you can’t supply a NULL pointer; instead,
you set the value to INFTIM (defined in stropts.h) if you want the call to block.. To summa-
rize:

• If timeout is set to INFTIM, poll blocks until a completion occurs on one of the speci-
fied files.

• If timeout is set to 0, a check is made for completions and poll returns immediately.

• If timeout is non-zero, poll waits for completion up to the specified timeout.

Typical use of poll

Like select, programs which use poll generally start a number of I/O transfers and then go
to some central place to wait for something to happen. In this case, the code could look like:

if (poll (pollfds, maxfnum, NULL) > 0) /* wait for something to complete */
{
int fd;
for (fd = 0; fd < maxfnum; fd++)
{
if (pollfds [fd].revents) /* something completed */
... check the result bits which interest you and
perform the appropriate actions

}
}

The code for starting the request and enabling SIGIO and SIGURG for the line assumes that the
file has been opened and the number stored in an array of file numbers.

rdchk
rdchk is a XENIX function that checks if data is available for reading on a specific file
descriptor:

int rdchk (int fd);

It returns 1 if data is available, 0 if no data is currently available, and -1 on error (and errno
is set). If you don’t hav e it, you can implement it in terms of select or poll.

5 February 2005 02:09

Chapter 14: File systems 225

SIGPOLL
System V systems can arrange to have the signal SIGPOLL delivered when a request com-
pletes. It is not completely general: the file in question must be a STREAMS device, since
only STREAMS drivers generate the SIGPOLL signal.

The ioctl call I_SETSIG enables SIGPOLL. The third parameter specifies a bit mask of
ev ents to wait for:

Table 14−6: I_SETSIG ev ent mask bits

Mask bit Event

S_INPUT A normal priority message is on the read queue.
S_HIPRI A high priority message is on the read queue.
S_OUTPUT The write queue is no longer full.
S_WRNORM The same thing as S_OUTPUT: The write queue is no longer full.
S_MSG A signal message is at the front of the read queue.
S_ERROR An error message has arrived at the stream head.
S_HANGUP A hangup message has arrived at the stream head.
S_RDNORM A normal message is on the read queue.
S_RDBAND An out of band message is on the read queue.
S_WRBAND We can write out of band data.
S_BANDURG In conjunction with S_RDBAND, generate SIGURG instead of SIGPOLL.

In addition to the call to ioctl, the process needs to set up a signal handler for SIG-
POLL—the default disposition is to terminate the process, which is probably not what you
want.

SIGIO
BSD systems have a similar mechanism to SIGPOLL, called SIGIO. Like SIGPOLL, it also has
its restrictions: it can be applied only to terminal or network devices. In addition, when out-
of-band data* arrives, a second signal, SIGURG, is generated. SIGIO and SIGURG are enabled
by the O_ASYNC flag to open and a couple of calls to fcntl—see page 209 for more details:

• First, specify the process or process group that should receive the signals, using the
fcntl subfunction F_SETOWN in order to enable reception of SIGURG.

• If you want to use SIGIO, set the O_ASYNC file status flag with the fcntl subfunction
F_SETFL.

• As with System V, you need to define a signal handler for SIGIO and SIGURG.

* Sockets use the term out-of-band to refer to data which comes in at a higher priority, such as TCP
urgent mode. Like STREAMS priority data, this data will be presented ahead of normal data.

5 February 2005 02:09

226

File locking
The Seventh Edition did not originally allow programs to coordinate concurrent access to a
file. If two users both had a file open for modification at the same time, it was almost impos-
sible to prevent disaster. This is an obvious disadvantage, and all modern versions of UNIX
supply some form of file locking.

Before we look at the functions that are available, it’s a good idea to consider the various
kinds of lock. There seem to be two of everything. First, the granularity is of interest:

file locking applies to the whole file.

range locking applies only to a range of byte offsets. This is sometimes misleadingly
called record locking.

With file locking, no other process can access the file when a lock is applied. With range
locking, multiple locks can coexist as long as their ranges don’t overlap. Secondly, there are
two types of lock:

Advisory locks do not actually prevent access to the file. They work only if every par-
ticipating process ensures that it locks the file before accessing it. If the
file is already locked, the process blocks until it gains the lock.

mandatory locks prevent (block) read and write access to the file, but do not stop it from
being removed or renamed. Many editors do just this, so even manda-
tory locking has its limitations.

Finally, there are also two ways in which locks cooperate with each other:

exclusive locks allow no other locks that overlap the range. This is the only was to per-
form file locking, and it implies that only a single process can access
the file at a time. These locks are also called also called write locks.

shared locks allow other shared locks to coexist with them. Their main purpose is to
prevent an exclusive lock from being applied. In combination with
mandatory range locking, a write is not permitted to a range covered by
a shared lock. These locks are also called read locks.

There are five different kinds of file or record locking in common use:

• Lock files, also called dot locking, is a primitive workaround used by communication pro-
grams such as uucp and getty. It is independent of the system platform, but since it is
frequently used we’ll look at it briefly. It implements advisory file locking.

• After the initial release of the Seventh Edition, a file locking package using the system
call locking was introduced. It is still in use today on XENIX systems. It implements
mandatory range locking.

• BSD systems have the system call flock. It implements advisory file locking.

• System V, POSIX.1, and more recent versions of BSD support range locking via the
fcntl system call. BSD and POSIX.1 systems provide only advisory locking. System
V supplies a choice of advisory or mandatory locking, depending on the file permissions.
If you need to rewrite locking code, this is the method you should use.

5 February 2005 02:09

Chapter 14: File systems 227

• System V also supplies range locking via the lockf library call. Again, it supplies a
choice of advisory or mandatory locking, depending on the file permissions.

The decision between advisory and mandatory locking in System V depends on the file per-
missions and not on the call to fcntl or lockf. The setgid bit is used for this purpose. Nor-
mally, in executables, the setgid bit specifies that the executable should assume the effective
group ID of its owner group when execed. On files that do not have group execute permis-
sion, it specifies mandatory locking if it is set, and advisory locking if it is not set. For exam-
ple,

• A file with permissions 0764 (rwxrw-r--) will be locked with advisory locking, since
its permissions include neither group execute nor setgid.

• A file with permissions 0774 (rwxrwxr--) will be locked with advisory locking, since
its permissions don’t include setgid.

• A file with permissions 02774 (rwxrwsr--) will be locked with advisory locking, since
its permissions include both group execute and setgid.

• A file with permissions 02764 will be locked with mandatory locking, since it has the
setgid bit set, but group execute is not set. If you list the permissions of this file with ls
-l, you get rwxrwlr-- on a System V system, but many versions of ls, including BSD
and GNU versions, will list rwxrwSr--.

Lock files
Lock files are the traditional method that uucp uses for locking serial lines. Serial lines are
typically used either for dialing out, for example with uucp, or dialing in, which is handled by
a program of the getty family. Some kind of synchronization is needed to ensure that both of
these programs don’t try to access the line at the same time. The other forms of locking we
describe only apply to disk files, so we can’t use them. Instead, uucp and getty create lock
files. A typical lock file will have a name like /var/spool/uucp/LCK..ttyb, and for some reason
these double periods in the name have led to the term dot locking.

The locking algorithm is straightforward: if a process wants to access a serial line /dev/ttyb, it
looks for a file /var/spool/uucp/LCK..ttyb. If it finds it, it checks the contents, which specify
the process ID of the owner, and checks if the owner still exists. If it does, the file is locked,
and the process can’t access the serial line. If the file doesn’t exist, or if the owner no longer
exists, the process creates the file if necessary and puts its own process ID in the file.

Although the algorithm is straightforward, the naming conventions are anything but standard-
ized. When porting software from other platforms, it is absolutely essential that all programs
using dot locking should be agreed on the lock file name and its format. Let’s look at the lock
file names for the device /dev/ttyb, which is major device number 29, minor device number 1.
The ls -l listing looks like:

$ ls -l /dev/ttyb
crw-rw-rw- 1 root sys 29, 1 Feb 25 1995 /dev/ttyb

5 February 2005 02:09

228

Table 14-7 describes common conventions:

Table 14−7: uucp lock file names and formats

System Name PID format

4.3BSD /usr/spool/uucp/LCK..ttyb binary, 4 bytes
4.4BSD /var/spool/uucp/LCK..ttyb binary, 4 bytes
System V.3 /usr/spool/uucp/LCK..ttyb ASCII, 10 bytes
System V.4 /var/spool/uucp/LK.032.029.001 ASCII, 10 bytes

A couple of points to note are:

• The digits in the lock file name for System V.4 are the major device number of the disk
on which /dev is located (32), the major device number of the serial device (29), and the
minor device number of the serial device (1).

• Some systems, such as SCO, have multiple names for terminal lines, depending on the
characteristics which it should exhibit. For example, /dev/tty1a refers to a line when run-
ning without modem control signals, and /dev/tty1A refers to the same line when running
with modem control signals. Clearly only one of these lines can be used at the same
time: by convention, the lock file name for both devices is /usr/spool/uucp/LCK..tty1a.

• The locations of the lock files vary considerably. Apart from those in the table, other
possibilities are /etc/locks/LCK..ttyb, /usr/spool/locks/LCK..ttyb, and
/usr/spool/uucp/LCK/LCK..ttyb.

• Still other methods exist. See the file policy.h in the Taylor uucp distribution for further
discussion.

Lock files are unreliable. It is quite possible for two processes to go through this algorithm at
the same time, both find that the lock file doesn’t exist, both create it, and both put their
process ID in it. The result is not what you want. Lock files should only be used when there
is really no alternative.

locking system call
locking comes from the original implementation introduced during the Seventh Edition. It
is still available in XENIX. It implements mandatory range locking.

int locking (int fd, int mode, long size);

locking locks a block of data of length size bytes, starting at the current position in the file.

5 February 2005 02:09

Chapter 14: File systems 229

mode can have one of the following values:

Table 14−8: locking operation codes

Parameter Meaning

LK_LOCK Obtain an exclusive lock for the specified block. If any part is not avail-
able, sleep until it becomes available.

LK_NBLCK Obtain an exclusive lock for the specified block. If any part is not avail-
able, the request fails, and errno is set to EACCES.

LK_NBRLCK Obtains a shared lock for the specified block. If any part is not available,
the request fails, and errno is set to EACCES.

LK_RLCK Obtain a shared lock for the specified block. If any part is not available,
sleep until it becomes available.

LK_UNLCK Unlock a previously locked block of data.

flock
flock is the weakest of all the lock functions. It provides only advisory file locking.

#include <sys/file.h>
(defined in sys/file.h)
#define LOCK_SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 4 /* don’t block when locking */
#define LOCK_UN 8 /* unlock */

int flock (int fd, int operation);

flock applies or removes a lock on fd. By default, if a lock cannot be granted, the process
blocks until the lock is available. If you set the flag LOCK_NB, flock returns immediately
with errno set to EWOULDBLOCK if the lock cannot be granted.

fcntl locking
On page 207 we discussed fcntl, a function that can perform various functions on open files.
A number of these functions perform advisory record locking, and System V also offers the
option of mandatory locking. All locking functions operate on a struct flock:

struct flock
{
short l_type; /* lock type: read/write, etc. */
short l_whence; /* type of l_start */
off_t l_start; /* starting offset */
off_t l_len; /* len = 0 means until end of file */
long l_sysid; /* Only SVR4 */
pid_t l_pid; /* lock owner */

5 February 2005 02:09

230

};

In this structure,

• l_type specifies the type of the lock, listed in Table 14-9.

Table 14−9: flock.l_type values

value Function

F_RDLCK Acquire a read or shared lock.
F_WRLCK Acquire a write or exclusive lock.
F_UNLCK Clear the lock.

• The offset is specified in the same way as a file offset is specified to lseek:
flock->l_whence may be set to SEEK_SET (offset is from the beginning of the file),
SEEK_CUR (offset is relative to the current position) or SEEK_EOF (offset is relative to the
current end of file position).

All fcntl lock operations use this struct, which is passed to fcntl as the arg parameter. For
example, to perform the operation F_FOOLK, you would write:

struct flock flock;
error = fcntl (myfile, F_FOOLK, &flock);

The following fcntl operations relate to locking:

• F_GETLK gets information on any current lock on the file. when calling, you set the
fields flock->l_type, flock->l_whence, flock->l_start, and flock->l_len to
the value of a lock that we want to set. If a lock that would cause a lock request to block
already exists, flock is overwritten with information about the lock. The field
flock->l_whence is set to SEEK_SET, and flock->l_start is set to the offset in the
file. flock->l_pid is set to the pid of the process that owns the lock. If the lock can be
granted, flock->l_type is set to F_UNLK and the rest of the structure is left unchanged,

• F_SETLK tries to set a lock (flock->l_type set to F_RDLCK or F_WRLCK) or to reset a
lock (flock->l_type set to F_UNLCK). If a lock cannot be obtained, fcntl returns
with errno set to EACCES (System V) or EAGAIN (BSD and POSIX).

• F_SETLKW works like F_SETLK, except that if the lock cannot be obtained, the process
blocks until it can be obtained.

• System V.4 has a further function, F_FREESP, which uses the struct flock, but in fact
has nothing to do with file locking: it frees the space defined by flock->l_whence,
flock->l_start, and flock->l_len. The data in this part of the file is physically
removed, a read access returns EOF, and a write access writes new data. The only reason
this operation uses the struct flock (and the reason we discuss it here) is because
struct flock has suitable members to describe the area that needs to be freed. Many
file systems allow data to be freed only if the end of the region corresponds with the end
of file, in which case the call can be replaced with ftruncate.

5 February 2005 02:09

Chapter 14: File systems 231

lockf
lockf is a library function supplied only with System V. Like fcntl, it implements advisory
or mandatory range locking based on the file permissions. In some systems, it is implemented
in terms of fcntl. It supports only exclusive locks:

#include <unistd.h>

int lockf (int fd, int function, long size);

The functions are similar to those supplied by fcntl. l_type specifies the type of the lock,
as shown in Table 14-10.

Table 14−10: lockf functions

value Function

F_ULOCK Unlock the range.
F_LOCK Acquire exclusive lock.
F_TLOCK Lock if possible, otherwise return status.
F_TEST Check range for other locks.

lockf does not specify a start offset for the range to be locked. This is always the current
position in the file—you need to use lseek to get there if you are not there already. The fol-
lowing code fragments are roughly equivalent:

flock->ltype = F_WRLK; /* lockf only supports write locks */
flock->whence = SEEK_SET;
flock->l_start = filepos; /* this was set elsewhere */
flock->l_len = reclen; /* the length to set */
error = fcntl (myfile, F_GETLK, &flock);

...and

lseek (myfile, SEEK_SET, filepos); /* Seek the correct place in the file */
error = lockf (myfile, F_LOCK, reclen);

Which locking scheme?
As we’ve seen, file locking is a can of worms. Many portable software packages offer you a
choice of locking mechanisms, and your system may supply a number of them. Which do
you take? Here are some rules of thumb:

• fcntl locking is the best choice, as long as your system and the package agree on what it
means. On System V.3 and V.4, fcntl locking offers the choice of mandatory or advi-
sory locking, whereas on other systems it only offers advisory locking. If your package
expects to be able to set mandatory locking, and you’re running, say, 4.4BSD, the pack-
age may not work correctly. If this happens, you may have to choose flock locking
instead.

5 February 2005 02:09

232

• If your system doesn’t hav e fcntl locking, you will almost certainly have either flock
or lockf locking instead. If the package supports it, use it. Pure BSD systems don’t
support lockf, but some versions simulate it. Since lockf can also be used to require
mandatory locking, it’s better to use flock on BSD systems and lockf on System V
systems.

• You’ll probably not come across any packages which support locking. If you do, and
your system supports it, it’s not a bad choice.

• If all else fails, use lock files. This is a very poor option, though—it’s probably a better
idea to consider a more modern kernel.

Memory-mapped files
Some systems offer a feature called memory mapped files: the data of a file is mapped to a
particular area of memory, so you can access it directly rather than by calling read and
write. This increases performance, since the virtual memory system is more efficient than
the file system. The following function calls are used to implement memory mapping:

• You need to open the file with the file system calls open or creat.

• mmap maps the file into memory.

• msync ensures that updates to the file map are flushed back to the file.

• munmap frees the mapped file data.

In the following sections, we’ll look at these functions more closely.

mmap
mmap maps a portion of a file to memory.

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap (caddr_t addr, int len, int prot, int flags, int fd, off_t offset);

• addr specifies the address at which the file should be mapped. Unless you have good
reasons to do otherwise, you should specify it as NULL and let mmap choose a suitable
address itself. If mmap can’t place the memory where it is requested, the subsequent be-
haviour depends on the flag MAP_FIXED—see the discussion of flags below.

• len specifies the length to map.

• prot specifies the accessibility of the resultant memory region, and may be any combi-
nation of PROT_EXEC (pages may be executed), PROT_READ (pages may be read) or
PROT_WRITE (pages may be written). In addition, System V.4 allows the specification
PROT_NONE (pages may not be accessed at all).

5 February 2005 02:09

Chapter 14: File systems 233

• flags is a bit map that specifies properties of the mapped region. It consists of a combi-
nation of the following bit-mapped flags:

− MAP_ANON specifies that the memory is not associated with any specific file. In
many ways, this is much the same thing as a call to malloc: you get an area of
memory with nothing in it. This flag is available only in BSD.

− MAP_FILE specifies that the region is mapped from a regular file or character-spe-
cial device. This flag, supplied only in BSD, is really a dummy and is used to indi-
cate the opposite of MAP_ANON: if you don’t hav e it, ignore it.

− MAP_FIXED specifies that mmap may use only the specified addr as the address of
the region. The 4.4BSD man page discourages the use of this option.

− MAP_INHERIT permits regions to be inherited across exec system calls. Only sup-
ported in 4.4BSD.

− MAP_PRIVATE specifies that modifications to the region are private: if the region is
modified, a copy of the modified pages is created and the modifications are copied
to them. This flag is used in debuggers and to perform page-aligned memory allo-
cations: malloc doesn’t allow you to specify the address you want. In some sys-
tems, such as System V.4, MAP_PRIVATE is defined as 0, so this is the default behav-
iour. In others, such as SunOS 4, you must specify either MAP_PRIVATE or
MAP_SHARED—otherwise the call fails with an EINVAL error code.

− MAP_SHARED specifies that modifications to the region are shared: the virtual mem-
ory manager writes any modifications back to the file.

• On success, mmap returns the address of the area that has been mapped. On failure, it
returns -1 and sets errno.

msync
Writes to the memory mapped region are treated like any other virtual memory access: the
page is marked dirty, and that’s all that happens immediately. At some later time the memory
manager writes the contents of memory to disk. If this file is shared with some other process,
you may need to explicitly flush it to disk, depending on the underlying cooperation between
the file system and the virtual memory manager.

System V.4 maps the pages at a low lev el, and the processes share the same physical page, so
this problem does not arise. BSD and older versions of System V keep separate copies of
memory mapped pages for each process that accesses them. This makes sharing them diffi-
cult. On these systems, the msync system call is used to flush memory areas to disk. This
solution is not perfect: the possibility still exists that a concurrent read of the area may get a
garbled copy of the data. To quote the 4.4BSD man pages:

Any required synchronization of memory caches also takes place at this time. Filesystem oper-
ations on a file that is mapped for shared modifications are unpredictable except after an
msync.

5 February 2005 02:09

234

Still, it’s better than nothing. The call is straightforward:

void msync (caddr_t addr, int len);

addr must be specified and must point to a memory mapped page; len may be 0, in which
case all modified pages are flushed. If len is not 0, only modified pages in the area defined
by addr and len are flushed.

munmap
munmap unmaps a memory mapped file region:

void munmap (caddr_t addr, int len);

It unmaps the memory region specified by addr and len. This is not necessary before termi-
nating a program—the region is unmapped like any other on termination—and it carries the
danger that modifications may be lost, since it doesn’t flush the region before deallocating.
About the only use is to free the area for some other operation.

5 February 2005 02:09

