5 February 2005 02:09

File systems

UNIX owes much of its success to the simplicity and flexibility of the facilities it offers for
file handling, generally called the file system. This term can have two different meanings:

1. It can be a part of a disk or floppy which can be accessed as a collection of files. It
includes regular files and directories. A floppy is usually a single file system, whereas a
hard disk can be partitioned into several file systems and possibly also non-file system
parts, such as swap space and bad track areas.

2. It can be the software in the kernel which accesses the file systems above.

UNIX has a single file hierarchy, unlike MS-DOS, which uses a separate letter for each file
system (A and B: for floppies, C. to Z: for local and network accessible disks). MS-DOS
determines the drive letter for the file systems at boot time, whereas UNIX only determines
the location of the root file system / at boot time. You add the other file systems to the direc-
tory tree by mounting them:

$ nount /dev/usr /usr

This mounts the file system on the disk partition /dev/usr onto the directory /usr, so if the root
directory of /dev/usr contains a file called foo, after mounting you can access it as /usr/foo.

Anything useful is bound to attract people who want to make it more useful, so it should come
as no surprise that a large number of “improvements” have been made to the file system in the
course of time. In the rest of this chapter, we’ll look at the following aspects in more detail:

» File systems introduced since the Seventh Edition.
« Differences in function calls, starting on page 206.
* Non-blocking I/O, starting on page 220.

* File locking, starting on page 226.

e Memory-mapped files, starting on page 232.

203

5 February 2005 02:09

204

File system structures

The original Seventh Edition file system is—at least in spirit—the basis for all current file
system implementations. All UNIX file systems differ in one important point from almost all
non-UNIX file systems:

¢« Atthe lowest level, the file system refers to files by numbers, so-called inodes. These are
in fact indices in the inode table, a part of the file system reserved for describing files.

« At a higher level, the directory system enables a file to be referred to by a name. This
relationship between a name and an inode is called a link, and it enables a single file to
have multiple names.

One consequence of this scheme is that it is normally not possible to determine the file name
of an open file.

The Seventh Edition file system is no longer in use in modern systems, though the System V
file system is quite similar. Since the Seventh Edition, a number of new file systems have
addressed weaknesses of the old file system:

« New file types were introduced, such as symbolic links, fifos and sockets.
« The performance was improved.

« The reliability was increased significantly.

« The length of the file names was increased.

We’ll look briefly at some of the differences in the next few sections.

The Berkeley Fast File System

The first alternative file system to appear was the Berkeley Fast File System, (FFS), now
called the Unix File System (ufs).” It is described in detail in A Fast File System for UNIX, by
Kirk McKusick, Bill Joy, Sam Leffler and Robert Fabry, and The Design and the Implementa-
tion of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels, and
John Quarterman. Its main purpose was to increase speed and storage efficiency. Compared
to the Seventh Edition file system, the following differences are relevant to porting software:

+ The maximum file name size was increased from 14 to 255 characters.

« The size of the inode number was increased from 16 to 32 bits, thus allowing an effec-
tively unlimited number of files.

« Symbolic links were introduced.

A symbolic link differs from a normal link in that it points to another file name, and not an
inode number.

* Don’t confuse the Berkeley FFS with SCO’s afs, which is sometimes referred to as a Fast File System.
In fact, afs is very similar to s5fs, though later versions have symbolic links and longer file names.

5 February 2005 02:09

Chapter 14: File systems 205

Symbolic links

A symbolic link is a fi le whose complete contents are the name of another fi le. To access via
a symboalic link, you fi rst need to fi nd the directory entry to which it is pointing, then resolve
the link to the inode. By contrast, a traditional link (sometimes called hard link) links a fi le
name to an inode. Several names can point to the same inode, but it only takes one step to
fi nd thefi le. This seemingly minor difference has a number of consequences:

* A defi nite relationship exists between the original fi le and the symbolic link. In anormal
link, each of the fi le names have the same relationship to the inode; in a symbolic link,
the symbolic link name refers to the main fi le name. This difference is particularly obvi-
ous if you remove the original file: with a normal link, the other name still works per-
fectly. With asymbolic link, you lose the fi le.

e Theré's nothing to stop a symbolic link from pointing to another symbolic link—in fact,
it's quite common, and is moderately useful. It also opens the possibility of looping: if
the second symbolic link points back to the fi rst, the system will give up after afew itera-
tions with the error code ELOCP.

* Symboalic links have two fi e permissions. In practice, the permission of the link itself is
of little consequence—normally it is set to allow reading, writing and execution for al
users (on an Is -1 listing you see | rwxr wxrwx). The permission that counts is still the
permission of the original fi le.

e Symboalic links allow links to different fi le systems, even (via NFS) to afi le system on a
different machine. Thisis particularly useful when using read-only media, such as CD-
ROMs. See Chapter 3, Care and feeding of source trees, page 39, for some examples.

* Symboalic links open up awhole new area of possible errors. It's possible for a symbolic
link to point to a fi le that doesn't exist, so you can’t access the fi le, even if you have a
name and the correct permissions.

Other file systems
Other fi le systems have emerged since ufs, including:

e TheSystem V file system, s5fs, aminor evolution of the Seventh Edition File system with
some performance and stability modifi cations, and without multiplexed fi les. Even in
System V, ufs has replaced it. For all practical purposes, you can consider it to be obso-
lete.

e The Veritas File System, vxfs and the Veritas Journalling File system, vjfs. From the
point of view of porting, they are effectively compatible with ufs.

« The Network File System, NFS,” a method of sharing fi le systems across networks. It
allows a system to mount fi le systems connected to a different machine. NFS runs on

* People just don’'t seem to be able to agree whether to write fi le system names in upper case (as befi ts
an abbreviation), or in lower case (the way most mount commands want to see them). It appears that
NFSiswritten in upper case more frequently than the other names.

5 February 2005 02:09

206

just about any system, including System V.3 and DOS, but unfortunately not XENIX. It
can offer a partial escape from the “14 character file limit, no symlinks” syndrome. It is
reasonably transparent, but unfortunately does not support device files.

+ Remote File Sharing, rfs. This is AT&T’s answer to NFS. Although it has a number of
advantages over NFS, it is not widely used.

Along with new file systems, new file types have evolved. We have already looked at sym-
bolic links, which we can think of as a new file type. Others include FIFOs (First In First
Out) and sockets, means of interprocess communications that we looked at in Chapter 12, Ker-
nel dependencies.

In practice, you run into problems only when you port software developed under ufs, vjfs or
vxfs to a s5fs system. If you can, you should change your file system. If you can’t do that,
here are some of the things that could give you headaches:

+ File name length. There’s very little you can do about this: if the file names are longer
than your kernel can understand, you have to change them. There are some subtle prob-
lems here: some 14-character file systems accept longer names and just silently truncate
them, others, notably SCO, signal an error. It should be fairly evident what your file sys-
tem does when you try to do it. If your system has the pat hconf system call, you can
also interrogate this programmatically (see page 212).

« Lack of symbolic links is another big problem. You may need far-reaching source
changes to get around this problem, which could bite you early on in the port: you may
have an archive containing symbolic links, or the configuration routines might try to cre-
ate them.

Another, more subtle difference is that BSD and System V do not agree on the question of

group ownership. In particular, when creating a file, the group ownership may be that of the
directory, or it may be that of the process that creates the file. BSD always gives the file the
group of the directory; in System V.4, it is the group of the process, unless the “set group ID”

bit is set in the directory permissions, in which case the file will belong to the same group as
the directory.

Function calls

The Seventh Edition left a surprising amount of functionality up to the system library. For
example, the kernel supplied no method to create a directory or rename a file. The methods
that were used to make up for these deficiencies were not always reliable, and in the course of
the time these functions have been implemented as system calls. Current systems offer the
following functions, some of them system calls:

chsize

chsi ze changes the end of file of an open file.

5 February 2005 02:09

Chapter 14: File systems 207

int chsize (int fd, long size);

It originated in XENIX and has been inherited by System V.3.2 and System V.4. It corre-
sponds both in function and in parameters to the System V version of f t r uncat e: if the new
end-of-fi le pointer is larger than the current end-of-fi le pointer, it will extend the fi le to the
new size.

dup2
All systems offer the system call dup, which creates a copy of afi le descriptor:
int dup (int oldd);

ol dd is an open fi le descriptor; dup returns ancther fi le descriptor pointing to the same fi le.
The problem with dup is that you don’t have any control over the number you get back: it's

the numerically smallest fi le descriptor currently not in use. In many cases, you want a spe-

cifi c number. Thisiswhat dup2 does:

int dup2 (int oldd, int newd);

With newd you specify the number of the new descriptor. If it's currently allocated, dup2
closes it first. You can fake this with dup, but it's painful. The F_DUPFD subfunction of
fcnt| doesthe same thing asdup2, so you can useit if it isavailable (see page 208). dup2 is
available on nearly every UNIX system, including the Seventh Edition. Somehow some ear-
lier versions of System V don't have it, however—recall that System V derived from the
Sixth Edition, not the Seventh Edition. See Chapter 1, Introduction, page 4.

fchdir and friends

Various systems offer functions with names like f chdi r, f chnod, f chown, and f chr oot .
These are effectively the same as the corresponding functions chdi r, chnod, chown, and
chr oot , except they take the number of an open fi leinstead of its name. For example:

#i ncl ude <sys/stat. h>

int chnmod (const char *path, node_t node);
int fchnod (int fd, node_t node);

You can replace them with a corresponding call to ch* if you know the name of the fi le asso-
ciated with the fi le descriptor; otherwise you could be in trouble.

fentl

All modern versions of UNIX supply afunction called f cnt | , which is rather like ani oct |
for disk fi les:

#i ncl ude <sys/fcntl. h>

int fentl (int fd, int cnd, union anything arg);

208

Table 14-1 shows common command values.

Table 14—1: fcnt| commands

Command System | Meaning

F_DUPFD all Duplicate a fi le descriptor, like dup. Return the lowest num-
bered descriptor that is higher than thei nt valuear g.

F GETFD all Get the close-on-exec flag associated with f d.

F SETFD all Set the close-on-exec flag associated with f d.

F FREESP SVR4, | Free storage space associated with a section of the filefd. See
Solaris | the section on fi le locking on page 230 for more details.

2.X
F GETFL all Get descriptor status flags (see below).
F SETFL all Set descriptor status flegsto ar g.

F GETOM BSD Get the process ID or the complement of the process group cur-
rently receiving Sl @ Oand Sl QURGsignals.

F GETOM SVR4 Get the user ID of the owner of the file. This function is not
documented for Solaris 2.X.

F _SETOM BSD Set the process or process group to receive Sl @ Oand S ARG
signals. If arg is negative, it is the complement of the process
group. If it ispositive, it isaprocessID.

F _SETOM SVR4 Set the user ID of the owner of thefi le. Thisfunction is not doc-
umented for Solaris 2.X.

F_GETLK all Get fi le record lock information. See the section on locking on
page 226, for more details.

F SETLK all Set or clear afi le record lock.

F_SETLKW | Al Set or clear afile record lock, waiting if necessary until it be-

comes available.

F GKFL SVR3 Check legality of fi le fleg changes.
F RSETLK SVR4 Used by lockd to handle NFS locks.
F RSETLKW | SVR4 Used by lockd to handle NFS locks.
F REETLK SVR4 Used by lockd to handle NFS locks.

As you can see from the table, ar g is not always supplied, and when it is, its meaning and
type vary depending on the call.

A couple of these functions deserve closer examination:;

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 209

F_SETFD and F_GETFD manipulate the close on exec flag. This is normally defi ned in
sys/fentl.h as 1. Many programs use the explicit constant 1, which is theoretically non-
portable, but which works with current systems.

By default, exec inherits open fi les to the new program. If the close on exec flag is set,
exec automatically closes thefi le.

F GETOM and F_SETOM have very different meanings for BSD and System V.4. In
BSD, they get and set the process ID that receives Sl @ Oand SI QURGsignals; in System
V.4, they get and set the fi le owner, which can also be done with stat or fstat. There
is no direct equivalent to the BSD F SETOM and F_ GETOM in System V, since the
underlying implementation of non-blocking 1/0 is different. Instead, you call i oct|
with thel _SETS| Grequest—see page 225 for more details.

The request F_CGHKFL is defi ned in the System V.3 header fi les, but it is not documented.

F GETFL and F_SETFL get and set the fi le status flegs that were initally set by open. Ta-
ble 14-2 shows the flags.

Table 14-2: fcnt | file status flegs

Flag System Meaning

O NONBLAX | al Do not block if the operation cannot be performed immediate-
ly. Instead, theread or writ e cal returns -1 with err no set
to BWOULDBLOK.

O APPEND all Append each write to the end of fi le.

O ASYNC BSD Send a Sl A Osigna to the process group when 1/0O is possi-
ble.

O SYNC SystemV | wite waitsfor writes to complete before returning.

O RDA\LY SystemV | Open for reading only.

O ROWR SystemV | Open for reading and writing.

O WRO\LY SystemV | Open for writing only.

getdents and getdirentries

getdent s (System V.4) and getdirentri es (BSD) are marginally compatible system calls
that read a directory entry in afi le-system independent format. Both systems provide a header
fi le /usr/include/sys/dirent.h, which defi nes a struct dirent, but unfortunately the struc-
tures are different. In System V, the structure and the call are:

struct dirent

{

ino_t d_ino;
off _t d off;

5 February 2005 02:09

210

unsi gned short d_reclen;
char d_nane[1];

b
int getdents(int fd, struct dirent *buf, size_ t nbyte);
getdirentri es isthe corresponding BSD system call:

struct dirent

{

unsigned long d_fil eno; /* "file nunber" (inode nunber) of entry */
unsi gned short d_recl en; /* length of this record */

unsi gned short d_nanten; /* length of string in d_nane */

char d_name[MXNAMLEN + 1]; /* nane nust be no longer than this */
b

int getdirentries(int fd, char *buf, int nbytes, |ong *basep);

Because of these compatibility problems, you don't normally use these system calls
directly—you use the library call readdi r instead. See the description of r eaddi r on page
213 for more information.

getdtablesize

Sometimes it's important to know how many fi les a process is allowed to open. This depends
heavily on the kernel implementation: some systems have a fi xed maximum number of files
that can be opened, and may allow you to specify it as a confi guration parameter when you
build a kernel. Others allow an effectively unlimited number of fi les, but the kernel allocates
space for files in groups of about 20. Evidently, the way you fi nd out about these limits
depends greatly on the system you are running:

e On systems with a fixed maximum, the constant NCFILE, usualy defined in
Jusr/include/sys/param.h, specifi es the number of fi les you can open.

e On systems with a confi gurable maximum, you will probably also fi nd the constant
NCHl LE, only you can't rely on it to be correct.

« On some systems that allocate resources for fi les in groups, the size of these groups may
be defi ned in /usr/include/sys/filedesc.h as the value of the constant NDFI LE.

« BSD systems offer the function get dt abl esi ze (no parameters) that returns the maxi-
mum number of fi les you can open.

e Modern systems offer thegetrlimt system call, which alows you to query a number
of kernel limits. See Chapter 12, Kernel dependencies, page 169, for details of getr -
limt.

5 February 2005 02:09

Chapter 14: File systems 211

ioctl

i octl is a catchall function that performs functions that weren’t thought of ahead of time.
Every system has its own warts on ioctl, and the most common problem withi oct| isacall
with a request that the kernel doesn’'t understand. We can’t go into detail about every ioctl
function, but we do examine terminal driver ioctl calls in some depth in Chapter 15, Terminal
drivers, starting on page 252.

| stat

| stat isaversion of stat. Itisidentica tostat unless the pathname specifi es a symbolic
link. Inthiscase, | stat returnsinformation about the link itself, whereasst at returns infor-
mation about the fi le to which the link points. BSD and System V.4 support it, and it should
be available on any system that supports symbolic links.

[trunc

I t runc truncates an open fi le in the same way that f t r uncat e does, but the parameters are
more reminiscent of | seek:

int Itrunc (int fd, off_t offset, int whence);
fd isthefi le descriptor. of f set and whence specify the new end-of-fi le value:
e Ifwhence isSEEK SET, | trunc setsthefilesizetoof f set .

« If whence is SEEK QR I trunc sets the fi le size to of f set bytes beyond the current
seek position.

e Ifwhence isSEEK END, | t runc increasesthefi le size by of f set .

No modern mainstream system supports| t runc. You canreplaceacalltrunc (fd, off-
set, SEEK SET) withftruncate (fd, offset). If you have cals with SEEK OUR and
SEEK _END, you need to fi rst establish the corresponding offset with acall tol seek:

ftruncate (fd, Iseek (fd, offset, SEEK OR)); or SEEK END

mkdir and rmdir

Older versions of UNIX did not supply a separate system call to create a directory; they used
nknod instead. Unfortunately, this meant that only the superuser could create directories.
Newer versions supply nkdi r andr ndi r. The syntax is:

#i ncl ude <sys/stat. h>
int nkdir (const char *path, node_t node)

#i ncl ude <uni std. h>
int rndir (const char *path)

If your system does not have the nkdi r system call, you can simulate it by invoking the

5 February 2005 02:09

212

nkdi r utility with the library function syst em

open

Since the Seventh Edition, open has acquired a few new fegs. All modern versions of UNIX
support most of them, but the following differ between versions:

* ONDELAY is available only in earlier versions of System V. It applies to devices and
FIFOs (see Chapter 12, Kernel dependencies, page 165, for more information on FIFOSs)
and specifi es that both the call to open and subsequent 1/O calls should return immedi-
ately without waiting for the operation to complete. A call tor ead returns O if no datais
available, which is unfortunately also the value returned at end-of-fi le. If you don’t have
O NDELAY, or if thisambiguity bugs you, use O NCNBLOCK.

O NONBLOX specifi es that both the call to open and subsequent 1/0 calls should return
immediately without waiting for completion. Unlike O NDELAY, a subsequent call to
read returns-1 (error) if no datais available, and er r no is set to EAGAI N

e System V.4 and 4.4BSD have a flag, called O SYNC in System V.4 and O FSYNC in
4.4BSD, which specifi es that each call to writewri t e should write any buffered data to
disk and update the inode. Control does not return to the program until these operations
complete. If your system does not support this feature, you can probably just remove it,
though you lose a little bit of security. To really do the Right Thing, you can include a
call tof sync after every I/0O.

pathconf and fpathconf

pat hconf andf pat hconf are POSIX.1 functions that get confi guration information for afi le
or directory:

ncl ude <uni std. h>
long fpathconf (int fd, int nane);
I ong pat hconf (const char *path, int nane);

The parameter nane isani nt, not aname. Despite what it is called, it specifi es the action to
perform:

Table 14—-3: pat hconf actions

nane Function

_PC LI NK_MAX Return the maximum number of links that can be made to an
inode.

_PC MAX_CANON For terminals, return the maximum length of a formatted in-
put line.

PC MAX | NPUT For terminals, return the maximum length of an input line.

_PC NAME MAX For directories, return the maximum length of afi le name.

5 February 2005 02:09

Chapter 14: File systems 213

Table 14—-3: pat hconf actions (continued)

nane Function

_PC PATH MAX Return the maximum length of a relative path hame starting
with this directory.

_PC PIPE BWF For FIFQs, return the size of the pipe buffer.

_PC GHOM RESTRI CTED | return TRUE if the chown system call may not be used on this
file. If fd or path refer to a directory, then this information
appliesto al fi lesin the directory.

_PC NO TRUINC return TRUE if an attempt to create a fi le with a name longer
than the maximum in this directory would fail with ENAME-
TOAOLANG

_PC VD SABLE For terminals, return TRUE if special character processing can
be disabled.

read

The function r ead is substantially unchanged since the Seventh Edition, but note the com-
ments about O NDELAY and O NCNBLAK in the section about open on page 212.

rename

Older versions of UNIX don’t have a system call to rename afi le: instead, they make a link
and then delete the old fi le. This can cause problemsif the processis stopped in the middle of
the operation, and so the atomic r ename function was introduced. If your system doesn’t
have it, you can still do it the old-fashioned way.

revoke

revoke isused in later BSD versionsto close al fi le descriptors associated with a specid fi le,
even those opened by a different process. It is not available with System V.4. Typically, this
call is used to disconnect serial lines.

After a process has called r evoke, a cal to read on the device from any process returns an
end-of-fi le indication, a call to cl ose succeeds, and al other calls fail. Only the fi le owner
and the super user may use this call.

readdir and friends

In the Seventh Edition, reading a directory was simple: directory entries were 16 bytes long
and consisted of a 2-byte inode number and a 14 byte file name. This was defi ned in a
struct direct:

struct direct
{
ino_t d_ino;
char d_name[D RSl Z;

5 February 2005 02:09

214

}

With the introduction of ufs, which supports names of up to 256 characters, it was no longer
practical to reserve afi xed-length fi eld for the fi le name, and it became more diffi cult to access
directories. A family of directory access routines was introduced with 4.2BSD:

#i ncl ude <sys/types. h>

#include <dirent.h>

DR *opendir (const char *filenane);
struct dirent *readdir (DR *dirp);
long telldir (const DR *dirp);
voi d seekdir (DR *dirp, long loc);
void rewinddir (DR *dirp);

int closedir (DR *dirp);

int dirfd (DR *dirp);

Along with the Dl Rtype, thereisastruct dirent that corresponds to the Seventh Edition
struct direct. Unfortunately, System V defines struct dirent and D R differently
from the original BSD implementation. In BSD, itis

struct dirent /* directory entry */
{
unsi gned | ong d_fil eno; /* file nunber of entry */
unsi gned short d_reclen; /* length of this record */
unsi gned short d_nant en; /* length of string in d_nane */
char d_nane [255 + 1]; /* maxi mum nane | ength */
b

/* structure describing an open directory. */
typedef struct _dirdesc

{

int dd_fd; /* directory file descriptor */
long dd_I oc; /* offset in current buffer */

long dd_size; /* amount of data fromgetdirentries */
char *dd_buf; /* data buffer */

int dd_len; /* size of data buffer */

long dd_seek; /* magi c cookie fromgetdirentries */

} OR

System V defi nes

struct dirent

{

ino_t d_ino; /* inode nunber of entry */
off_t d off; /* offset of directory entry */
unsi gned short d_reclen; /* length of this record */

char d_nane [1]; /* nane of file */

IS

typedef struct

int dd_fd; /* file descriptor */
int dd_|l oc; /* offset in block */
int dd_size; /* amount of valid data */

5 February 2005 02:09

Chapter 14: File systems 215

char *dd_buf; /* directory block */
} DR /* streamdata fromopendir() */

There are anumber of ugly incompatibilities here:

e Thefieldd_filenointheBSD dirent structisnot afile descriptor, but an inode num-
ber. The System V name d_i no makes this fact clearer, but it introduces a name incom-
patiblity.

¢ A number of the BSD fi elds are missing in the System V structures. You can calculate
dirent.d nanten by subtracting the length of the other fields from
dirent.d recl en. For example, based on the System V di rent structure above:

d_namen = dirent.d_reclen
- sizeof (ino_t) /* length of the d_ino field */
- sizeof (d_off) /* length of the d_off field */
- sizeof (unsigned short); /* length of the d_reclen field */

System V.4 has two versions of these routines: a System V version and aBSD version. Many
reports have claimed that the BSD version is broken, though it's possible that the program-
mers were using the wrong header fi les. |f you do run into trouble, you should make sure the
header fi les match the flavour of di rent and D Rthat you have.

readv and writev

readv and wri tev perform a so-called scatter read and gather write. These functions are
intended to write to afi le a number of pieces of data spread in memory, or to read from afile
to anumber of places.

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/ ui o. h>
insys/uio.his the definition:
struct iovec

{

caddr_t iov_base;
int iov_|en;
b

int readv(int d, struct iovec *iov, int iovcnt);
int witev (int d, struct iovec *iov, int iovcnt);

Each i ovec element specifi es an address and the number of bytes to transfer to or from it.
The total number of bytes transferred would be the sum of thei ov_| en fi elds of all i ovent
elements. readv and wri t ev are available only for BSD and System V.4 systems—if you

don't have them, it's relatively easy to fake them in terms of read or wite. The reasons
why these calls exist at all are;

* Some devices, such as tape drives, write a physical record for each call towite. This
can result in asignifi cant drop in performance and tape capacity.

5 February 2005 02:09

216

» For tape drives, the only alternative is to copy the data into one block before writing.
This, too, impacts performance, though not nearly as much as writing smaller blocks.

» Even for devices that don’t write a physical block per wi t e, it's faster to do it in the
kernel with just a single function call: you don’t have as many context switches.

statfs and statvfs

statfs orstat vfs return information about afi le system in aformat referred to as a generic
superblock. All current UNIX versions supply one or the other of these functions, but the
information they return varies greatly. XENIX, System V.3, BSD, and BSD-derived SunOS
operating systems supply st at f s. System V.4 suppliesst at vf s.

BSD systems defi nest at f s like this:

typedef quad fsid_t;

#def i ne MNAMELEN 32 /* length of buffer for returned name */
struct statfs

{

short f_type; /* type of filesystem(see bel ow) */

short f_flags; /* copy of mount flags */

| ong f_fsize; /* fundanental file systembl ock size */

| ong f _bsi ze; /* optimal transfer block size */

| ong f_bl ocks; /* total data blocks in file system*/

| ong f_bfree; /* free blocks in fs */

| ong f_bavail ; /* free bl ocks avail to non-superuser */

| ong f_files; /* total file nodes in file system*/

| ong f_ffree; /* free file nodes in fs */

fsidt f_fsid; /* file systemid */

| ong f_spare[6]; /* spare for later */

char f _mmt onnarme[MNAMELEN ; /* nount poi nt */
char f_mt frommane] MMAMELEN ; /* nounted fil esystem*/

}
Sun0S 4.1.3 defi nesthem as:

ncl ude <sys/vfs. h>

typedef struct

{
| ong val[2];
} fsid t;
struct statfs
{
I ong f_type; /* type of info, zero for now */
| ong f_bsi ze; /* fundanental file systembl ock size */
| ong f _bl ocks; /* total blocks in file system*/
I ong f_bfree; /* free bl ocks */
| ong f_bavail ; /* free bl ocks avail abl e to non-super-user */
| ong f_files; /* total file nodes in file system?*/
| ong f_ffree; /* free file nodes in fs */

Chapter 14: File systems 217

fsidt f_fsid; /* file systemid */
| ong f_spare[7]; /* spare for later */

b
System V.3 and XENIX defi ne:

struct statfs

short f_fstyp; /* File systemtype */

long f_bsize; /* Block size */

long f_frsize; /* Fragnent size (if supported) */

long f_bl ocks; /* Total nunber of blocks on file system*/
long f_bfree; /* Total nunber of free bl ocks */

long f_files; /* Total nunber of file nodes (inodes) */
long f_ffree; /* Total nunber of free file nodes */

char f_fnane[6]; /* Vol ume nare */

char f_fpack[6]; /* Pack nane */

IS

int statfs (const char *path, struct statfs *buf);
int fstatfs (int fd, struct statfs *buf);

System V.4 and Solaris 2.X usest at vf s, which is defi ned as

#i ncl ude <sys/types. h>
#i ncl ude <sys/statvfs. h>

struct statvfs

{
u_long f_bsize; /* preferred file systembl ock size */
ulong f_frsize; /* fundanental filesystembl ock size */
u_long f_blocks; /* total # of blocks on file system*/
u_long f_bfree; /* total # of free bl ocks */
ulong f_bavail; /* # of free bl ocks avail able */
ulong f_files; /* total # of file nodes (inodes) */
u_long f_ffree; /* total # of free file nodes */
ulong f_favail; /* # of inodes available */
ulong f_fsid; /* file systemid (dev for now */
char f _baset ype [FSTYPSZ]; /* target fs type nane */
ulong f_flag; /* bit mask of flags */
u_long f_namenax; /* maxi numfile name length */
char f_fstr [32]; /* file systemspecific string */
ulong f_filler [16]; /* reserved for future expansion */
b
#define ST_RDONLY 0x01 /* read-only file system*/
#define ST_ NOBUD 0x02 /* does not support setuid/setgid */
#def i ne ST_NOTRUNC 0x04 /* does not truncate long file names */

int statvfs (const char *path, struct statvfs *buf);
int fstatvfs (int fd, struct statvfs *buf);

There's not much to say about these functions; if you have problems, hopefully this informa-
tion will help you fi gure out what the author intended.

5 February 2005 02:09

5 February 2005 02:09

218

symlink
synml i nk createsa symboalic link in fi le systems that support symbolic links:

#i ncl ude <uni std. h>

int symink (const char *real name, const char *synbolic_nane);

A symbolic link synbol i c_nare is created to the namer eal _nane.

sysfs

sysf s isa System V function that returns information about the kinds of fi le systems confi g-
ured in the system. This function has the rather strange property of not being compatible with
ANSI C—the parameters it accepts depend on the function supplied:

#i ncl ude <sys/fstyp. h>
#i ncl ude <sys/fsid. h>

int sysfs ((int) GETFSIND, const char *fsnane);

This call trandates f snane, a null-terminated fi le-system type identifi er, into a fi le-system
type index.

int sysfs ((int) GETFSTYP, int fs_index, char *buf);

Thiscall trandatesf s_i ndex, afi le-system type index, into a NUL-terminated fi le-system type
identifi er in the buffer pointed to by buf.

int sysfs((int) GETNFSTYP);

This call returns the total number of fi le system types confi gured in the system.

truncate and ftruncate

These functions set the EOF pointer of afile. truncat e fi nds the fi le via its fi le name, and
ftruncat e requires the fi le number of an openfi le.

ncl ude <uni std. h>
int truncate (const char *path, off_t length);
int ftruncate (int fd, off _t length);

These functions are available with BSD and System V.4. Thereis a subtle difference between

the way the BSD and System V.4 versions work: if the file is smaller than the requested
length, System V.4 extends the fi le to the specifi ed length, while BSD leavesit asit is. Both
versions discard any data beyond the end if the current EOF is longer.

If your system doesn’t have these functions, you may be able to perform the same function
with chsi ze (page 206) or thef cnt | function F_FREESP (page 208).

5 February 2005 02:09

Chapter 14: File systems 219

ustat

ust at returns information about a mounted fi le system, and is supported by System V and
SunOS 4, but not by BSD. Thecal is:

struct ustat

{

daddr_t f_tfree; /* Total blocks available */
ino_t f_tinode; /* Nunber of free inodes */
char f_fnane [6]; /* File systemnane */

char f_fpack [6]; /* File systempack nane */

int ustat (dev_t dev, struct ustat *buf);

On BSD systems, you can get this information with the st at f s system call, which requires a
path name instead of a device number.

utime and utimes
uti ne isavailablein al versions of UNIX.

#i ncl ude <sys/types. h>
#i ncl ude <utine. h>

int utine (const char *path, const struct utinbuf *tines);

uti me sets the modifi cation timestamp of the fi le defi ned by pat h to the time specifi ed in
times. In the Seventh Edition, ti nes was required to be a valid pointer, and only the fi le
owner or root could use the cal. All newer versions of UNIX allow ti mes to be a NULL
pointer, in which case the modifi cation timestamp is set to the current time. Any process that
has write access to the fi le can use ut i ne in this manner. BSD implements this function in
the C library in terms of the function ut i nes:

#i ncl ude <sys/tine. h>
sys/tine. h defines:
struct tineval
{
long tv_sec; /* seconds */
I ong tv_usec; /* and m croseconds */
h

int utines (const char *file, const struct tineval *times);

#i ncl ude <sys/types. h>
#i ncl ude <utine. h>
utine. h defines:

struct uti mbuf

{

tine_t actineg; /* access tine */
tine_t nodtineg; /* nodification tinme */
b

int utine (char *path, struct utinbuf *tines);

5 February 2005 02:09

220

The difference between ut i e and ut i nes is simply in the format of the accesstime: uti ne
suppliesthetimeinti me_t format, which is accurate to a second, whereas ut i mes uses the
timeval struct which is (theoretically) accurate to one microsecond. BSD systems supply
the ut i me function as alibrary call (which, not surprisingly, callsuti nes). On XENIX and
early System V systemsyou can fake ut i mes using ut i ne.

Non-blocking I/0

In early versions of UNIX, all device 1/0O was blocking: if you made a call to read and no
data was available, or if you made a call towri t e and the device wasn't ready to accept the
data, the process would sleep until the situation changed. Thisis still the default behaviour.

Blocking /O can be restrictive in many situations, and many schemes have been devised to
alow a process to continue execution before the 1/0O operation completes. On current sys-
tems, you select non-blocking /O either by supplying the fleg O NCNBLOCK to open, or by
caling thefcnt | function F_SETFL with the O NCNBLOXK flag (see page 209).

One problem with non-blocking /O is that you don’'t automatically know when a request is

complete. In addition, if you have multiple requests outstanding, you may not really care
which fi nishes fi rst, you just want to know when one fi nishes.

Two approaches have been used to inform a process when a request completes. Oneisto call
afunction that returns information about current request status, and that may optionally block
until something completes. Traditionally, BSD uses sel ect to perform this function,
whereas System V usespol | .

The other solution isto send asignal (S| GPCLL in System V, Sl @ Oor SI GURGin BSD) when
the reguest fi nishes. In both systems, this has the disadvantage of not supplying any informa-
tion about the reguest that completed, so if you have more than one request outstanding, you
still need to call sel ect or pol | to handle the situation.

select

sel ect iscaled with the following parameters:

#define FD _SETSI ZE 512 ny naxi num FD count, see bel ow
#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/tine. h>

These header fi les defi ne the structs:

typedef struct fd_ set
{
fd_nmask fds_bits [howrany (FD SETSI ZE, NFDBITS)];
} fd_set;

struct tineval

{
long tv_sec; /* seconds */
long tv_usec; /* and m croseconds */

5 February 2005 02:09

Chapter 14: File systems 221

}

int select (int nfds, fd_set *readfds, fd_set *witefds, fd_set *exceptfds,
struct timeval *tineout);

The parameters r eadf ds, wri t ef ds, and except f ds are bit maps, one bit per possible fi le
descriptor. Recall that fi le descriptors are small non-negative integers. sel ect uses the file
descriptor as an index in the bit map.

This gives us a problem when porting: we don’'t know how many fi les our implementation
supports. In modern systems, there is usually no fi xed limit. The solution chosen is a kludge:
“choose a suffi ciently high number”. The expression howrany (FD SETSI ZE, NFDBI TS)
evaluates to the number of words of NFDBI TS required to store FD_SETS ZE hits:

#def i ne howmrany(bits, wordsize) ((bits + wordsize - 1) / wordsize)

In 4.4BSD FD SETS ZE defaults to 256 (in sys/types.h). Nowadays, a server with many
reguestors could quite easily exceed that value. Because of this, you can set it yourself: just
defi ne FD_SETSl ZE before including /usr/include/sys/types.h, as indicated in the syntax over-
view above.

Setting variables of typef d_nask istricky, so a number of macros are supplied:

FD SET (fd, & dset) /* set bit fd in fdset*/

FD AR (fd, &dset) /* clear bit fd in fdset */

FD | SSET (fd, & dset) /* return value of bit fd in fdset */
FD ZERO (& dset) /* clear all bits in fdset */

sel ect examines the fi les specifi ed in readf ds for read completion, the fi les specifi ed in
writefds for write completion and the fi les specifi ed in except f ds for exceptional condi-
tions. You can set any of these pointers to NULL if you're not interested in this kind of event.
The action that sel ect takes depends on the value of t i neout :

o If timeout isaNJL pointer, sel ect blocks until a completion occurs on one of the
specifi ed fi les.

e If both timeout ->tv_sec and tineout->tv_usec are set to 0, sel ect checks for
completions and returns immediately.

e Otherwisesel ect waitsfor completion up to the specifi ed timeout.

sel ect returns-1 on error conditions, and the number of ready descriptors (possibly O) other-

wise. It replaces the contents of r eadf ds, wri t ef ds, and except f ds with bit maps indicat-

ing which fi les had a corresponding completion.

So far, we haven't even mentioned nf ds. Strictly speaking, it's not needed: you use it to indi-

cate the number of fi le descriptors that are worth examining. By default, open and dup allo-
cate the lowest possible fi le descriptors, so sel ect can save a lot of work if you tell it the
highest fi le number that is worth examining in the bit maps. Since fi le descriptors start at 0,
the number of fi le descriptorsis 1 higher than the highest fi e descriptor number.

This baroque function has a couple of other gotchas waiting for you:

5 February 2005 02:09

222

The state of readf ds, wri t ef ds, and except f ds is undefi ned if sel ect returns O or
-1. System V clears the descriptors, whereas BSD leaves them unchanged. Some Sys-
tem V programs check the descriptors even if O is returned: this can cause problems if
you port such a program to BSD.

The return value is interpreted differently in BSD and System V. In BSD, each comple-
tion event is counted, so you can have up to 3 completions for asingle fi le. In System V,
the number of fi leswith completionsis returned.

On completion without timeout, Linux decrements the value of ti neout by the time

elapsed sincethe call: if ti meout wasinitially set to 30 seconds, and I/0O completes after

5 seconds, the value of t i neout on return from sel ect will be 25 seconds. This can be

of useif you have a number of outstanding requests, al of which must completein a cer-

tain time: you can call sel ect again for the remaining fi le descriptors without fi rst cal-
culating how much time remains.

In Linux, this feature can be disabled by setting the STI CKY_TI MEQUTS fhg in the

COFF/ELF personality used by the process. Other versions of UNIX do not currently

suppport this feature, although both System V and BSD suggest that it will be imple-

mented. For example, the man pages for 4.4BSD state:

Select() should probably return the time remaining from the original timeout, if any, by modi-
fying the time value in place. This may be implemented in future versions of the system.
Thus, it is unwise to assume that the timeout value will be unmodifi ed by the select() call.

If you find a system without sel ect that does support pol |, you can probably replace

sel

ect withpol | —it'sjust aSMOP”

Typical use of select

Programs which use sel ect generally start a number of 1/0O transfers and then go to some
central place to wait for something to happen. The code could look like:

if (select (nmaxfnum /* nunber of files to check */
&r eadf ds, /* mask of read conpletions */
&writefds, /* mask of wite conpletions */
&except f ds, /* nmask of exception conpletions */
NULL) > 0) /* no tineout */
{ /* we have conpl etions, */
int fd;

for (fd =0; fd < maxfnum fd++)

if (FDISSET (fd, readfds)) /* this file has a read conpl etion */
read_conpl etion (fd); /* process it */

if (FDISSET (fd, witefds)) /* this file has a wite conpletion */
wite_conpletion (fd); /* process it */

if (FDISSET (fd, exceptfds)) /* this file has a exception conpl etion */

* To quote the New Hacker’s Dictionary: SMOP: /S-M-O-P/ [Smple (or Small) Matter of Program-
ming] n. 2. Often used ironically ... when a suggestion for a program is made which seems easy to
the suggester, but is obvioudly (to the victim) a lot of work.

5 February 2005 02:09

Chapter 14: File systems 223

exception_conpl etion (fd); /* process it */

}

As we saw above, FD | SSET is a macro which checks if bit fd is set in the bit mask. The
foo_conpl et i on functions do whatever is needed on completion of 1/O for this fi le descrip-
tor. See Advanced Programming in the UNIX environment, by Richard Stevens, for further
information.

pol
pol | takesadifferent approach from sel ect :

#incl ude <stropts. h>
ncl ude <pol | . h>

inpoll.his the definition
struct pollfd

{

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

b

int poll (struct pollfd *fds, unsigned |long nfds, int tineout);

For each fi le of interest, you set up apol | fd element with the fi le number and the events of
interest. events andrevent s are again bit maps. event s can be made up of the following
values:

Table 14—4: pol | event codes

Event Meaning

PCLLIN Data other than high priority datais available for reading.

PCLLRONGRM | Normal data” (priority band = 0) is available for reading.

POLLRDBAND | Datafrom anon-zero priority band is available for reading.

PCLLPR High priority datais available for reading.

PALLQJT Normal data may be written without blocking.

POLLWANCRM | The same as POLLOUT: normal data may be written without blocking.
POLLWRBAND | Priority data (priority band > 0) may be written without blocking.

When it succeeds, pol | sets the corresponding bits in revent s to indicate which events

* STREAMS recognizes 256 different data priority bands. Normal datais sent with priority band 0, but
urgent data with a higher priority can "leapfrog” normal data. See UNIX Network Programming, by W.
Richard Stevens, for further information.

5 February 2005 02:09

224

occurred. In addition, it may set the following event bits:

Table 14-5: pol | result codes

Event Meaning

PCLLERR An error has occurred on the device or stream.
PQLLHUP A hangup has occurred.

POLLNVAL | The specifi ed fd is not open.

Timeout processing is nearly the same as for sel ect , but the parameter t i meout is specifi ed
in milliseconds. Since it isani nt, not a pointer, you can’'t supply a NLLL pointer; instead,
you set the value to | NFTI M(defi ned in stropts.h) if you want the call to block.. To summa-
rize:

e Iftineout issettol NFTI M pol | blocks until a completion occurs on one of the speci-
fi edfi les.

e Iftineout issetto0, acheck ismadefor completionsand pol | returnsimmediately.

e Iftineout isnon-zero, pol | waitsfor completion up to the specifi ed timeout.

Typical use of poll

Likesel ect , programs which use pol | generaly start a number of 1/0O transfers and then go
to some central place to wait for something to happen. In this case, the code could look like:

if (poll (pollfds, maxfnum NJL) > 0) /* wait for sonething to conplete */

{
int fd;
for (fd =0; fd < maxfnum fd++)

if (pollfds [fd].revents) /* sonething conpl eted */
. check the result bits which interest you and
performthe appropriate actions
}
}

The code for starting the request and enabling Sl @ Oand SI GURGfor the line assumes that the
fi le has been opened and the number stored in an array of fi le numbers.

rdchk

rdchk is a XENIX function that checks if data is available for reading on a specifi ¢ file
descriptor:

int rdchk (int fd);

It returns 1 if data is available, O if no data is currently available, and -1 on error (and err no
isset). If you don’t haveit, you can implement it in terms of sel ect or pol | .

5 February 2005 02:09

Chapter 14: File systems 225

SIGPOLL

System V systems can arrange to have the signal Sl GPCLL delivered when a request com-
pletes. It is not completely genera: the fi le in question must be a STREAMS device, since
only STREAMS drivers generate the S GPCLL signal.

Theioctl cal | _SETS Genables S GPALL. The third parameter specifi es a bit mask of
eventsto wait for:

Table 14—6: | _SETSl Gevent mask bits

Mask bi t Event

S I NPUT A normal priority message is on the read queue.

S HPR A high priority message is on the read queue.

S QUTPUT The write queue is no longer full.

S WANORM | Thesamething asS_QJTPUT: The write queueis no longer full.
S MG A signal messageis at the front of the read queue.

S ERRR An error message has arrived at the stream head.

S HANAP A hangup message has arrived at the stream head.

S RONORM | A normal message is on the read queue.

S ROBAND | Anout of band message is on the read queue.

S WRBAND We can write out of band data.

S BANDURG | Inconjunction with S RDBAND, generate Sl QRGinstead of S| GPQLL.

In addition to the call to ioctl, the process needs to set up a signal handler for SI G
PCA_L—the default disposition is to terminate the process, which is probably not what you
want.

SIGIO

BSD systems have a similar mechanismto Sl GPCLL, called Sl @ QO Like Sl GPCLL, it also has
its restrictions: it can be applied only to terminal or network devices. In addition, when out-
of-band data’ arrives, a second signal, Sl ARG is generated. S @ Oand S| QURG are enabled
by the O ASYNC flag to open and a couple of callstof cnt | —see page 209 for more details:

e First, specify the process or process group that should receive the signals, using the
fentl subfunction F_ SETOMN N order to enable reception of SI AURG

e If you want to use Sl A Q set the O ASYNC fi le status flag with the f cnt | subfunction
F SETFL.

* Aswith System V, you need to defi ne asignal handler for S @ Oand SI QARG

* Sockets use the term out-of-band to refer to data which comes in at a higher priority, such as TCP
urgent mode. Like STREAMS priority data, this datawill be presented ahead of normal data.

226

File locking

The Seventh Edition did not originally alow programs to coordinate concurrent access to a
file. If two users both had a fi le open for modifi cation at the same time, it was almost impos-
sible to prevent disaster. Thisis an obvious disadvantage, and al modern versions of UNIX
supply some form of fi le locking.

Before we look at the functions that are available, it's a good idea to consider the various

kinds of lock. There seem to be two of everything. First, the granularity is of interest:

file locking applies to the wholefi le.

range locking applies only to arange of byte offsets. This is sometimes misleadingly
called record locking.

With fi le locking, no other process can access the fi le when a lock is applied. With range

locking, multiple locks can coexist as long as their ranges don't overlap. Secondly, there are

two types of lock:

Advisory locks do not actually prevent access to the fi le. They work only if every par-
ticipating process ensures that it locks the fi le before accessingit. If the
fi leis already locked, the process blocks until it gains the lock.

mandatory locks prevent (block) read and write access to the fi le, but do not stop it from
being removed or renamed. Many editors do just this, so even manda-
tory locking hasits limitations.

Finally, there are also two ways in which locks cooperate with each other:

exclusive locks alow no other locks that overlap the range. Thisisthe only was to per-
form fi le locking, and it implies that only a single process can access
thefi leat atime. These locks are also called also called write locks.

shared locks alow other shared locks to coexist with them. Their main purposeisto
prevent an exclusive lock from being applied. In combination with
mandatory range locking, awrite is not permitted to a range covered by
ashared lock. Theselocks are also called read locks.

There arefi ve different kinds of fi le or record locking in common use:

e Lock files, also called dot locking, is a primitive workaround used by communication pro-
grams such as uucp and getty. It is independent of the system platform, but since it is
frequently used we'll look at it briefly. 1t implements advisory fi le locking.

« After the initia release of the Seventh Edition, a fi le locking package using the system
cal | ocki ng was introduced. It is till in use today on XENIX systems. It implements
mandatory range locking.

« BSD systems havethe system call f | ock. Itimplements advisory fi le locking.

e System V, POSIX.1, and more recent versions of BSD support range locking via the
fentl system call. BSD and POSIX.1 systems provide only advisory locking. System
V supplies a choice of advisory or mandatory locking, depending on the fi le permissions.
If you need to rewrite locking code, thisis the method you should use.

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 227

e System V also supplies range locking via the | ockf library call. Again, it supplies a
choice of advisory or mandatory locking, depending on the fi le permissions.

The decision between advisory and mandatory locking in System V depends on the fi le per-
missions and not on the call tofcnt| or | ockf. The setgid bit is used for this purpose. Nor-
mally, in executables, the setgid bit specifi es that the executable should assume the effective
group ID of its owner group when execed. On fi les that do not have group execute permis-
sion, it specifi es mandatory locking if it is set, and advisory locking if it is not set. For exam-
ple,

e A file with permissions 0764 (rwxrwr--) will be locked with advisory locking, since
its permissions include neither group execute nor setgid.

e A file with permissions 0774 (rwxrwxr - -) will be locked with advisory locking, since
its permissions don't include setgid.

* A filewith permissions 02774 (r wkr wsr - -) will be locked with advisory locking, since
its permissions include both group execute and setgid.

« A file with permissions 02764 will be locked with mandatory locking, since it has the
setgid bit set, but group execute is not set. If you list the permissions of this fi le with Is
-, you get rwxrw r-- on a System V system, but many versions of Is, including BSD
and GNU versions, will list rwxrwsr - - .

Lock files

Lock fi les are the traditional method that uucp uses for locking serial lines. Seria lines are
typically used either for dialing out, for example with uucp, or dialing in, which is handled by
a program of the getty family. Some kind of synchronization is needed to ensure that both of
these programs don't try to access the line at the same time. The other forms of locking we
describe only apply to disk fi les, so we can’'t use them. Instead, uucp and getty create lock
files. A typical lock fi le will have a name like /var/spool/uucp/LCK..ttyb, and for some reason
these double periodsin the name have led to the term dot locking.

The locking agorithm is straightforward: if a process wants to access a seria line /dev/ttyb, it
looks for a fi le /var/spool/uucp/LCK..ttyb. If it fi nds it, it checks the contents, which specify
the process ID of the owner, and checks if the owner still exists. If it does, the fi le is locked,
and the process can't access the serial line. If the fi le doesn’t exist, or if the owner no longer
exists, the process creates the fi le if necessary and putsits own process ID in thefi le.
Although the algorithm is straightforward, the naming conventions are anything but standard-
ized. When porting software from other platforms, it is absolutely essential that all programs
using dot locking should be agreed on the lock fi le name and its format. Let'slook at the lock
fi le names for the device /dev/ttyb, which is major device number 29, minor device number 1.
Thels-I listing looks like;

$1s -1 /devittyb
crwerwrw 1 root sys 29, 1 Feb 25 1995 /dev/ttyb

5 February 2005 02:09

228

Table 14-7 describes common conventions:

Table 14—7: uucp lock file names and formats

System Name PID format

4. 3BSD Jusr/spool/uucp/LCK..ttyb binary, 4 bytes
4. 4BSD Ivar/spool/uucp/LCK..ttyb binary, 4 bytes
SystemV. 3 | /usr/spool/uucp/LCK..ttyb ASCII, 10 bytes

SystemV. 4 | /var/spool/uucp/LK.032.029.001 | ASCII, 10 bytes

A couple of pointsto note are:

The digits in the lock fi le name for System V.4 are the major device number of the disk
on which /dev is located (32), the major device number of the serial device (29), and the
minor device number of the seria device (1).

Some systems, such as SCO, have multiple names for terminal lines, depending on the
characteristics which it should exhibit. For example, /dev/ttyla refersto aline when run-
ning without modem control signals, and /dev/tty1A refers to the same line when running
with modem control signals. Clearly only one of these lines can be used at the same
time: by convention, the lock fi le name for both devicesis/usr/spool/uucp/LCK..ttyla.

The locations of the lock fi les vary considerably. Apart from those in the table, other
possibilities are [etc/locks/LCK..ttyb, {usr/spool/locks/LCK..ttyb, and
Jusr/spool/uucp/LCK/LCK..ttyb.

Still other methods exist. See the fi le policy.h in the Taylor uucp distribution for further
discussion.

Lock fi les are unreliable. It is quite possible for two processes to go through this algorithm at
the same time, both fi nd that the lock file doesn't exist, both create it, and both put their
process ID init. Theresult is not what you want. Lock fi les should only be used when there
isreally no alternative.

locking system call

| ocki ng comes from the original implementation introduced during the Seventh Edition. It
isdtill availablein XENIX. It implements mandatory range locking.

int locking (int fd, int node, |ong size);

I ocki ng locks ablock of data of length si ze bytes, starting at the current position in thefi le.

5 February 2005 02:09

Chapter 14: File systems

229

node can have one of the following values:

Table 14-8: | ocki ng operation codes

Paraneter | Meaning

LK LOX Obtain an exclusive lock for the specifi ed block. If any part is not avail-
able, sleep until it becomes available.

LK_NBLCK Obtain an exclusive lock for the specifi ed block. If any part is not avail-
able, the request fails, and er r no is set to EACCES.

LK NBRLCK | Obtains a shared lock for the specifi ed block. If any part is not available,
the request fails, and er r no is set to EACCES.

LK R Obtain a shared lock for the specifi ed block. If any part is not available,
sleep until it becomes available.

LK UNLCK Unlock a previously locked block of data.

flock

f 1 ock isthe weakest of all thelock functions. It provides only advisory fi le locking.

#incl ude <sys/file.h>
(defined in sys/file.h)

#defi ne
#defi ne
#def i ne
#defi ne

int flock (int fd,

LOXK_SH
LOK_EX
LOXK_NB
LOK_UN

/* shared | ock */

/* exclusive | ock */

/* don't bl ock when | ocking */
/* unl ock */

AN

int operation);

f1 ock applies or removes alock on fd. By default, if alock cannot be granted, the process
blocks until the lock is available. If you set the feg LOCK NB, fl ock returns immediately
with er r no set to BAOULDBLOCK if the lock cannot be granted.

fentl locking

On page 207 we discussed f cnt | , afunction that can perform various functions on open fi les.
A number of these functions perform advisory record locking, and System V aso offers the
option of mandatory locking. All locking functions operate on ast ruct f1 ock:

struct flock

{

short | _type;
short | _whence;
off t | _start;

off _t I_len;
long | _sysid;
pidt |_pid;

/* lock type: read/wite, etc. */

/* type of | _start */

/* starting offset */

/* len = 0 nmeans until end of file */
/* Only SWR4 */

/* 1 ock owner */

230

}
In this structure,

| _type specifi esthetype of the lock, listed in Table 14-9.

Table 14—-9: fl ock. | _type vaues

vdue | Function

F ROLCK | Acquirearead or shared lock.

F WRLCK | Acquire awrite or exclusive lock.
F UNLCK | Clear the lock.

The offset is specified in the same way as a file offset is specified to | seek:
f1 ock- > _whence may be set to SEEK SET (offset is from the beginning of the fi le),
SEEK AR (offset is relative to the current position) or SEEK _ECF (offset is relative to the
current end of fi le position).

All fentl lock operations use this struct, which is passed tof cnt| asthear g parameter. For
example, to perform the operation F_FQOOLK, you would write:

struct flock flock;
error = fentl (nyfile, F_FOOK &l ock);

Thefollowingfcnt| operations relate to locking:

5 February 2005 02:09

F _GETLK gets information on any current lock on the file. when calling, you set the
fieldsfl ock->l _type, fl ock-> whence, fl ock-> start, and fl ock->l |en to
the value of alock that we want to set. If alock that would cause alock request to block

already exists, fl ock is overwritten with information about the lock. The fied
fl ock->l _whence is set to SEEK SET, and fl ock-> _start is set to the offset in the
file. fl ock->l pidissetto the pid of the process that ownsthe lock. If thelock can be
granted, f| ock->l _type issetto F_ UNLK and the rest of the structure is left unchanged,

F SETLK triesto set alock (fl ock->l type set to F ROLCK or F WRLCK) or to reset a
lock (flock-> type set to F UNLCK). If alock cannot be obtained, fcnt| returns
with er r no set to EAQCES (System V) or EAGAI N (BSD and POSIX).

F_SETLKWworks like F_SETLK, except that if the lock cannot be obtained, the process
blocks until it can be obtained.

System V.4 has a further function, F_FREESP, which usesthestruct fl ock, but in fact

has nothing to do with fi le locking: it frees the space defi ned by fl ock->l _whence,
flock-> _start, and fl ock->l | en. The datain this part of the file is physically
removed, a read access returns ECF, and a write access writes new data. The only reason

this operation uses the struct fl ock (and the reason we discuss it here) is because
struct fl ock has suitable members to describe the area that needs to be freed. Many

fi le systems allow data to be freed only if the end of the region corresponds with the end
of fi le, in which case the call can bereplaced withft runcat e.

5 February 2005 02:09

Chapter 14: File systems 231

|ockf

| ockf isalibrary function supplied only with System V. Likefcntl , it implements advisory
or mandatory range locking based on the fi le permissions. In some systems, it isimplemented
intermsof fcnt | . It supports only exclusive locks:

#i ncl ude <uni std. h>

int lockf (int fd, int function, long size);

The functions are similar to those supplied by fcnt | . | _t ype specifi es the type of the lock,
as shown in Table 14-10.

Table 14—10: | ockf functions

value Function

F_ UOX | Unlock therange.

F LOX Acquire exclusive lock.

F TLOX | Lock if possible, otherwise return status.
F_TEST Check range for other locks.

| ockf does not specify a start offset for the range to be locked. This is aways the current
position in the fi le—you need to use | seek to get there if you are not there already. The fol-
lowing code fragments are roughly equivalent:

flock->type = F WRLK; /* lockf only supports wite |ocks */
f1 ock->whence = SEEK SET;

flock-> _start = filepos; /* this was set el sewhere */

flock-> _len = reclen; /* the length to set */

error = fentl (nyfile, F_ GETLK &l ock);
..and

Iseek (nyfile, SEEK SET, filepos); /* Seek the correct place in the file */
error = |ockf (nyfile, F LOX reclen);

Which locking scheme?

As we've seen, fi le locking is a can of worms. Many portable software packages offer you a
choice of locking mechanisms, and your system may supply a number of them. Which do
you take? Here are some rules of thumb:

« fentl locking is the best choice, as long as your system and the package agree on what it
means. On System V.3 and V.4, fcnt| locking offers the choice of mandatory or advi-
sory locking, whereas on other systems it only offers advisory locking. If your package
expects to be able to set mandatory locking, and you're running, say, 4.4BSD, the pack-
age may not work correctly. If this happens, you may have to choose f 1 ock locking
instead.

232

e If your system doesn’'t have f cnt | locking, you will ailmost certainly have either f | ock
or | ockf locking instead. If the package supports it, use it. Pure BSD systems don’t
support | ockf , but some versions simulate it. Since | ockf can also be used to require
mandatory locking, it's better to use fI ock on BSD systems and | ockf on System V
systems.

* You'll probably not come across any packages which support | ocki ng. If you do, and
your system supportsit, it's hot a bad choice.

o If al elsefails, use lock fi les. Thisisavery poor option, though—it's probably a better
ideato consider a more modern kernel.

Memory-mapped files

Some systems offer a feature called memory mapped fi les: the data of afile is mapped to a
particular area of memory, so you can access it directly rather than by calling read and
wite. Thisincreases performance, since the virtual memory system is more effi cient than
thefi le system. The following function calls are used to implement memory mapping:

* You need to open the fi le with the fi le system callsopen or cr eat .

e nmap maps thefi leinto memory.

e nsync ensuresthat updates to the fi le map are fushed back to thefi le.
* munnap freesthe mapped fi le data.

In the following sections, we'll [ook at these functions more closely.

mmap
mrap maps a portion of afi leto memory.

#i ncl ude <sys/types. h>
#i ncl ude <sys/man. h>

caddr_t nmap (caddr_t addr, int len, int prot, int flags, int fd, off _t offset);

e addr specifi es the address at which the fi le should be mapped. Unless you have good
reasons to do otherwise, you should specify it as NULL and let mrap choose a suitable
address itself. If mrap can’t place the memory where it is requested, the subsequent be-
haviour depends on the flag MAP_FI XED—see the discussion of flags below.

* | en specifi es the length to map.

e prot specifi es the accessibility of the resultant memory region, and may be any combi-
nation of PROT_EXEC (pages may be executed), PROT_READ (pages may be read) or
PROT_WR TE (pages may be written). In addition, System V.4 allows the specifi cation
PROT_NONE (pages may hot be accessed at al).

5 February 2005 02:09

5 February 2005 02:09

Chapter 14: File systems 233

« flags is a bit map that specifies properties of the mapped region. It consists of a combi-
nation of the following bit-mapped flags:

- MAP_ANCN specifies that the memory is not associated with any specific file. In
many ways, this is much the same thing as a call to nal | oc: you get an area of
memory with nothing in it. This flag is available only in BSD.

- NMAP_FI LE specifies that the region is mapped from a regular file or character-spe-
cial device. This flag, supplied only in BSD, is really a dummy and is used to indi-
cate the opposite of MAP_ANON if you don’t have it, ignore it.

- NMAP_FI XED specifies that mmap may use only the specified addr as the address of
the region. The 4.4BSD man page discourages the use of this option.

- MAP_I NHER T permits regions to be inherited across exec system calls. Only sup-
ported in 4.4BSD.

- MAP_PR VATE specifies that modifications to the region are private: if the region is
modified, a copy of the modified pages is created and the modifications are copied
to them. This flag is used in debuggers and to perform page-aligned memory allo-
cations: nal | oc doesn’t allow you to specify the address you want. In some sys-
tems, such as System V.4, MAP_PR VATE is defined as 0, so this is the default behav-
iour. In others, such as SunOS 4, you must specify either MAP_PR VATE or
MAP_SHARED—otherwise the call fails with an El NVAL error code.

- NAP_SHARED specifies that modifications to the region are shared: the virtual mem-
ory manager writes any modifications back to the file.

+ On success, mmap returns the address of the area that has been mapped. On failure, it
returns - 1 and sets er r no.

msync

Writes to the memory mapped region are treated like any other virtual memory access: the
page is marked dirty, and that’s all that happens immediately. At some later time the memory
manager writes the contents of memory to disk. If this file is shared with some other process,
you may need to explicitly flush it to disk, depending on the underlying cooperation between

the file system and the virtual memory manager.

System V.4 maps the pages at a low level, and the processes share the same physical page, so
this problem does not arise. BSD and older versions of System V keep separate copies of
memory mapped pages for each process that accesses them. This makes sharing them diffi-
cult. On these systems, the nsync system call is used to flush memory areas to disk. This

solution is not perfect: the possibility still exists that a concurrent read of the area may get a
garbled copy of the data. To quote the 4.4BSD man pages:

Any required synchronization of memory caches also takes place at thistime. Filesystem oper-
ations on a file that is mapped for shared modifi cations are unpredictable except after an

msync.

5 February 2005 02:09

234

Still, it's better than nothing. The call is straightforward:
void nsync (caddr_t addr, int len);

addr must be specifi ed and must point to a memory mapped page; | en may be 0, in which
case al modifi ed pages are fushed. If | en is not O, only modifi ed pages in the area defi ned
by addr and| en are flushed.

munmap
munmap unmaps a memory mapped fi le region:
voi d nunnap (caddr_t addr, int len);

It unmaps the memory region specifi ed by addr and | en. Thisis not necessary before termi-
nating a program—the region is unmapped like any other on termination—and it carries the
danger that modifi cations may be lost, since it doesn’t fush the region before deallocating.
About the only use isto free the area for some other operation.

