
Hardware dependencies

The days are gone when moving a package from one hardware platform to another meant
rewriting the package, but there are still a number of points that could cause you problems. In
this chapter, we’ll look at the most common causes.

Data types
All computers have at least two basic data types, characters and integers. While European
languages can get by with a character width of 8 bits, integers must be at least 16 bits wide to
be of any use, and most UNIX systems use 32 bit integers, as much storage as four characters.
Problems can obviously arise if you port a package to a system whose int size is less than the
author of the package expected.

Integer sizes
Data sizes aren’t the problem they used to be—times were when a machine word could be 8,
12, 16, 18, 24, 30, 32, 36, 48, 60, 64 or 72 bits long, and so were the primary integer data
objects. Nowadays you can expect nearly every machine to have an int of 16, 32 or 64 bits,
and the vast majority of these have a 32 bit int. Still, one of the biggest problems in ANSI C
is the lack of an exact definition of data sizes. int is the most used simple data type, but
depending on implementation it can vary between 16 and 64 bits long. short and long can be
the same size as int, or they can be shorter or longer, respectively. There are advantages to
this approach: the C compiler will normally choose an int which results in the fastest pro-
cessing time for the processor on which the program will run. This is not always the smallest
data size: most 32-bit machines handle 32 bit arithmetic operations faster than 16 bit opera-
tions. Problems don’t arise until the choice of int is too small to hold the data that the pro-
gram tries to store in it. If this situation arises, you have a number of options:

• You can go through the sources with an editor and replace all occurrences of the word
int with long (and possibly short with int).*

* If you do this, be sure to check that you don’t replace short int with int int!

153

5 February 2005 02:09



154

• You can simplify this matter a little by inserting the following definition in a common
header file:

#define int long

This has the disadvantage that you can’t define short as int, because preprocessor
macros are recursive, and you will end up with both int and short defined as long.

• Some compilers, particularly those with 16-bit native ints, offer compiler flags to gener-
ate longer standard ints.

All these “solutions” have the problem that they do not affect library functions. If your sys-
tem library expects 16-bit integers, and you write

int x = 123456;
printf ("x is %d\n", x);

the library routine printf still assumes that the parameter x is 16 bits long, and prints out the
value as a signed 16-bit value (-7616), not what you want. To get it to work, you need to
either specify an alternate library, or change the format specification to printf:

int x = 123456;
printf ("x is %l\n", x);

There are a few other things to note about the size of an int:

• Portable software doesn’t usually rely on the size of an int. The software from the Free
Software Foundation is an exception: one of the explicit design goals is a 32-bit target
machine.

• The only 64-bit machine that is currently of any significance is the DEC Alpha. You
don’t need to expect too many problems there.

• 16 bit machines—including the 8086 architecture, which is still in use under MS-
DOS — are a different matter, and you may experience significant pain porting, say, a
GNU program to MS-DOS. If you really want to do this, you should look at the way gcc
has been adapted to MS-DOS: it continues to run in 32-bit protected mode and has a
library wrapper* to allow it to run under MS-DOS.

Floating point types
Floating point data types have the same problems that integer types do: they can be of differ-
ent lengths, and they can be big-endian or little-endian. I don’t know of any system where
ints are big-endian and floats are little-endian, or vice-versa.

Apart from these problems, floats have a number of different structures, which are as good as
completely incompatible. Fortunately, you don’t normally need to look under the covers: as
long as a float handles roughly the same range of values as the system for which the program
was written, you shouldn’t hav e any problems. If you do need to look more carefully, for
example if the programmer was making assumptions, say, about the position of the sign bit of

* A library wrapper is a library that insulates the program (in this case, a UNIX-like application) from
the harsh realities of the outside world (in this case, MS-DOS).

5 February 2005 02:09



Chapter 11: Hardware dependencies 155

the mantissa, then you should prepare for some serious re-writing.

Pointer size
For years, people assumed that pointers and ints were the same size. The lax syntax of early
C compilers didn’t even raise an eyebrow when people assigned ints to pointers or vice-versa.
Nowadays, a number of machines have pointers that are not the same size as ints. If you are
using such a machine, you should pay particular attention to compiler warnings that ints are
assigned to pointers without a cast. For example, if you have 16-bit ints and 32-bit pointers,
sloppy pointer arithmetic can result in the loss of the high-order bits of the address, with obvi-
ous consequences.

Address space
All modern UNIX variants offer virtual memory, though the exact terminology varies. If you
read the documentation for System V.4, you will discover that it offers virtual memory,
whereas System V.3 only offered demand paging. This is more marketspeak than technology:
System V.2, System V.3, and System V.4 each have very different memory management, but
we can define virtual memory to mean any kind of addressing scheme where a process address
space can be larger than real memory (the hardware memory installed in the system). With
this definition, all versions of System V and all the other versions of UNIX you are likely to
come across have virtual memory.

Virtual memory makes you a lot less dependent on the actual size of physical memory. The
software from the Free Software Foundation makes liberal use of the fact: programs from the
GNU project make no attempt to economize on memory usage. Linking the gcc C++ com-
piler cc1plus with GNU ld uses about 23 MB of virtual address space on System V.3 on an
Intel architecture. This works with just about any memory configuration, as long as

• Your processes are allowed as much address space as they need (if you run into trouble,
you should reconfigure your kernel for at least 32 MB maximum process address space,
more if the system allows it).

• You have enough swap space.

• You can wait for the virtual memory manager to do its thing.

From a configuration viewpoint, we have different worries:

• Is the address space large enough for the program to run?

• How long are pointers? A 16 bit pointer can address only 64 kilobytes, a 32 bit pointer
can address 4 GB.

• How do we address memory? Machines with 16 bit pointers need some kind of addi-
tional hardware support to access more than 64 kilobytes. 32 bit pointers are adequate
for a “flat” addressing scheme, where the address contained in the pointer can address the
entire virtual address space.

5 February 2005 02:09



156

Modern UNIX systems run on hardware with 32 bit pointers, even if some machines have ints
with only 16 bits, so you don’t need to worry much about these problems. Operating systems
such MS-DOS, which runs on machines with 16 bit pointers, have significant problems as a
result, and porting 32 bit software to them can be an adventure. We’ll touch on these prob-
lems in Chapter 20, Compilers, page 346.

Character order
The biggest headache you are likely to encounter in the field of hardware dependencies is the
differing relationship between int and character strings from one architecture to the next.
Nowadays, all machines have integers large enough to hold more than one character. In the
old days, characters in memory weren’t directly addressable, and various tricks were
employed to access individual characters. The concept of byte addressing, introduced with
the IBM System/360, solved that problem, but introduced another: two different ways of look-
ing at bytes within a word arose. One camp decided to number the bytes in a register or a
machine word from left to right, the other from right to left. For hardware reasons, text was
always stored from low byte address to high byte address.

A couple of examples will make this more intelligible. As we saw above, text is always
stored low byte to high byte, so in any architecture, the text “UNIX” would be stored as

0 1 2 3

U N I X

Some architectures, such Sparc and Motorola 68000, number the bytes in a binary data word
from left to right. This arrangement is called big-endian. On a big-endian machine, the bytes
are numbered from left to right, so the number 0x12345678 would be stored like

0 1 2 3

12 34 56 78

Others, notably older Digital Equipment machines and all Intel machines, number the bytes
the other way round: byte 0 in a binary data word is on the right, byte 3 is on the left. This
arrangement is called little-endian.* The same example on a little-endian machine would look
like:

3 2 1 0

12 34 56 78

This may look just the same as before, but the byte numbers are now numbered from right to
left, so the text now reads:

* The names big-endian and little-endian are derived from Jonathan Swift’s “Gulliver’s Travels”, where
they were a satirical reference to the conflicts between the Catholics and the Church of England in the
18th Century.

5 February 2005 02:09



Chapter 11: Hardware dependencies 157

3 2 1 0

X I N U

As a result, this phenomenon is sometimes called the NUXI* syndrome. This is only one way
to look at it, of course: from a memory point of view, where the bytes are numbered left to
right, it looks like

0 1 2 3

78 56 34 12

and

0 1 2 3

U N I X

It’s rather confusing to look at the number 0x12345678 as 78563412, so the NUXI (or XINU)
view predominates. It’s easier to grasp the concepts if you remember that this is all a matter
of the mapping between bytes and words, and that text is always stored correctly from low
byte to high byte.

An alternative term for big-endian and little-endian is the term byte sex. To make matters
ev en more confusing, machines based on the MIPS chips are veritable hermaphrodites—all
have configurable byte sex, and the newer machines can even run different processes with dif-
ferent byte sex.

The problem of byte sex may seem like a storm in a teacup, but it crops up in the most
unlikely situation. Consider the following code, originally written on a VAX, a little-endian
machine:

int c = 0;

read (fd, &c, 1);
if (c == ’q’)
exit (0);

On a little-endian machine, the single character is input to the low-order byte of the word, so
the comparison is correct, and entering the character q causes the program to stop. On a
32-bit big-endian machine, entering the character q sets c to the value 0x71000000, not the
same value as the character q. Any good or even mediocre compiler will of course warn you
if you hand the address of an int to read, but only if you remember to include the correct
header files: it happens anyway.

* Why not XINU? Because the term arose when words were 16 bits long. The PDP-11, for example,
stored ints (16 bit quantities) in a little-endian format, so pairs of bytes were swapped. The PDP-11
also had 32 bit long quantities that were stored with their component words in a big-endian format.
This arrangement has been called mixed-endian, just to add to the general confusion.

5 February 2005 02:09



158

This discussion has concentrated on how characters are ordered within words, but the same
considerations also affect bit fields within a word. Most hardware platforms don’t support bit
fields directly: they’re an idea in the mind of the compiler. Nonetheless, all architectures
define a bit order: some number from left to right, some from right to left. Well-written pro-
grams don’t rely on the order of bit fields in ints, but occasionally you see register definitions
as bit fields. For example, the 4.4BSD sources for the HP300 include the following definition:

struct ac_restatdb
{
short ac_eaddr; /* element address */
u_int ac_res1:2,

ac_ie:1, /* import enabled (IEE only) */
ac_ee:1, /* export enabled (IEE only) */
ac_acc:1, /* accessible from MTE */
ac_exc:1, /* element in abnormal state */
ac_imp:1, /* 1 == user inserted medium (IEE only) */
ac_full:1; /* element contains media */

};

This definition defines individual bits in a hardware register. If the board in question fits in
machines that number the bits differently, then the code will need to be modified to suit.

Data alignment
Most architectures address memory at the byte level, but that doesn’t mean that the underlying
hardware treats all bytes the same. In the interests of efficiency, the processor accesses mem-
ory several bytes at a time. A 32-bit machine, for example, normally accesses data 4 bytes at
a time — this is one of the most frequent meanings of the term “32-bit machine”. It’s the com-
bined responsibility of the hardware and the software to make it look as if every byte is
accessed in the same way.

Conflicts can arise as soon as you access more than a byte at a time: if you access 2 bytes
starting in the last byte of a machine word, you are effectively asking the machine to fetch a
word from memory, throw away all of it except the last byte, then fetch another word, throw
aw ay all except the first, and make a 16 bit value out of the two remaining bytes. This is obvi-
ously a lot more work than accessing 2 bytes at an even address. The hardware can hide a lot
of this overhead, but in most architectures there is no way to avoid the two memory accesses
if the address spans two bus words.

Hardware designers have followed various philosophies in addressing data alignment. Some
machines, such as the Intel 486, allow unaligned access, but performance is reduced. Others,
typically RISC machines, were designed to consider this to be a Bad Thing and don’t even try:
if you attempt to access unaligned data, the processor generates a trap. It’s then up to the soft-
ware to decide whether to signal a bus error or simulate the transfer—in either case it’s unde-
sirable.

Compilers know about alignment problems and “solve” them by moving data to the next
address that matches the machine’s data access restrictions, leaving empty space, so-called
padding in between. Since the C language doesn’t hav e any provision for specifying

5 February 2005 02:09



Chapter 11: Hardware dependencies 159

alignment information, you’re usually stuck with the solution supplied by the compiler writer:
the compiler automatically aligns data of specific types to certain boundaries. This doesn’t do
much harm with scalars, but can be a real pain with structs when you transfer them to disk.
Consider the following program excerpt:

struct emmental
{
char flag;
int count;
short choice;
int date;
short weekday;
double amount;
}

emmental;
read_disk (struct emmental *rec)
{
if (read (disk, rec, sizeof (rec)) < sizeof (rec))
report_bad_error (disk);

}

On just about any system, emmental looks like a Swiss cheese: on an i386 architecture,
shorts need to be on a 2-byte boundary and ints and doubles need to be on a 4-byte boundary.
This information allows us to put in the offsets:

struct emmental
{
char flag; /* offset 0 */
/* 3 bytes empty space */
int count; /* offset 4 */
short choice; /* offset 8 */
/* 2 bytes empty space */
int date; /* offset 12 */
short weekday; /* offset 16 */
/* 2 bytes empty space */
double amount; /* offset 20 */
}

emmental;

As if this weren’t bad enough, on a Sparc doubles must be on an 8-byte boundary, so on a
Sparc we have 6 bytes of empty space after weekday, to bring the offset up to 24. As a result,
emmental has 21 useful bytes of information and up to 13 of wasted space.

This is, of course, a contrived example, and good programmers would take care to lay the
struct out better. But there are still valid reasons why you encounter this kind of alignment
problem:

• If flag, count and choice are a key in a database record, they need to be stored in this
sequence.

• A few years ago, even most good programmers didn’t expect to have to align a double on
an 8-byte boundary.

5 February 2005 02:09



160

• A lot of the software you get looks as if it has never seen a good programmer.

Apart from the waste of space, alignment brings a host of other problems. If the first three
fields really are a database key, somebody (probably the database manager) has to ensure that
the gaps are set to a known value. If this database is shared between different machines, our
read_disk routine is going to be in trouble. If you write the record on an i386, it is 28 bytes
long. If you try to read it in on a Sparc, read_disk expects 32 bytes and fails. Even if you
fix that, amount is in the wrong place.

A further problem in this example is that Sparcs are big-endian and i386s are little-endian:
after reading the record, you don’t just need to compact it, you also need to flip the bytes in
the shorts, ints and doubles.

Good portable software has accounted for these problems, of course. On the other hand, if
your program compiles just fine and then falls flat on its face when you try to run it, this is one
of the first things to check.

Instruction alignment
The part of the processor that performs memory access usually doesn’t distinguish between
fetching instructions from memory and fetching data from memory: the only difference is
what happens to the information after it has reached the CPU. As a result, instruction align-
ment is be subject to the same considerations as data alignment. Some CPUs require all
instructions to be on a 32 bit boundary—this is typically the case for RISC CPUs, and it
implies that all instructions should be the same length—and other CPUs allow instructions to
start at any address, which is virtually a requirement for machines with variable length
instructions.* As with data access, being allowed to make this kind of access doesn’t make it a
good idea. For example, the Intel 486 and Pentium processors execute instructions aligned on
any address, but they run significantly faster if the target address of a jump instruction is
aligned at the beginning of a processor word — the alignment of other instructions is not
important. Many compilers take a flag to tell them to align instructions for the i486.

* Some machines with variable length instructions do have a requirement that an instruction fit in a sin-
gle machine word. This was the case with the Control Data 6600 and successors, which had a 60 bit
word and 15 or 30 bit instructions. If a 30 bit instruction would have started at the 45 bit position inside
a word, it had to be moved to the next word, and the last 15 bits of the previous instruction word were
filled with a nop, a “no-operation” instruction.

5 February 2005 02:09


