
Terminal Drivers

Terminal I/O is a real can of worms. In the Seventh Edition, it wasn’t exactly simple. To
quote the terminal driver man page,

The terminal handler has clearly entered the race for ever-greater complexity and generality.
It’s still not complex and general enough for TENEX fans.

Since then, things have gone steadily downhill.

The most important terminal driver versions are:

• The “old” terminal driver, derived from the Seventh Edition terminal driver. This driver
is still in use in XENIX and older BSD versions.

• The System III/System V terminal driver, also called termio.

• The POSIX.1 termios routines, derived from termio.

Most modern systems support more than one kind of serial line driver. This is known as the
line discipline. Apart from terminal drivers, the most important line disciplines for asynchro-
nous lines are SLIP (Serial Line Internet Protocol) and PPP (Point to Point Protocol). These
are very implementation dependent, and we won’t discuss them further. The line discipline is
set with the TIOCSETD ioctl, described on page 259.

It’s beyond the scope of this book to explain all the intricacies and kludges that have been
added to terminal handlers over the decades. Advanced Programming in the UNIX environ-
ment, by Richard Stevens, gives you a good overview of current practice, and you shouldn’t
really want to know about older versions unless you have trouble with them. In the following
discussion, we’ll concentrate on the four areas that cause the most headaches when porting
programs:

• The externally visible data structures used for passing information to and from the driver.

• A brief overview of the different operational modes (raw, cooked, cbreak, canonical and
non-canonical).

235

5 February 2005 02:09

236

• The ioctl request interface to the terminal driver, one of the favourite problem areas in
porting terminal-related software.

• The POSIX.1 termios request interface.

The documentation of every driver describes at least two different modes of treating terminal
input. The Seventh Edition and BSD drivers define three:

• In raw mode, the read system call passes input characters to the caller exactly as they
are entered. No processing takes place in the driver. This mode is useful for programs
which want to interpret characters themselves, such as full-screen editors.

• cooked mode interprets a number of special characters, including the new line character
\n. A read call will terminate on a \n. This is the normal mode used by programs that
don’t want to be bothered by the intricacies of terminal programming.

• cbreak mode performs partial interpretation of the special characters, this time not
including \n. cbreak mode is easier to use than raw mode, and is adequate for many pur-
poses. It’s a matter of taste whether you prefer this to raw mode or not.

By contrast, termio and termios specify two different processing modes for terminal input:

• canonical* mode performs significant processing on input before passing it to the calling
function. Up to 21 input special characters may be used to tell the driver to do things as
varied as start and stop output, to clear the input buffer, to send signals to the process and
to terminate a line in a number of different ways.

• Non-canonical input mode, in which the driver does not interpret input characters spe-
cially (this corresponds roughly to BSD cbreak mode).

In fact, subdividing the terminal operation into modes is an oversimplification: a large number
of flags modify the operational modes. Later in the chapter we’ll look at how to set these
modes with termios.

Typical terminal code
This is all rather abstract: let’s look at a simple example: a program wants to read a single
character from the terminal. To do this, it needs to set raw or non-canonical mode, read the
character, and then reinstate the previous mode. For the old terminal driver, the code looks
like Example 15-1:

Example 15−1:

struct sgttyb initial_status; /* initial termios flags */
struct sgttyb raw_status; /* and the same with icanon reset */

ioctl (stdin, TIOCGETA, &initial_status); /* get attributes */
raw_status = initial_status; /* make a copy */
raw_status.sg_flags |= RAW; /* and set raw mode */

* The word canon refers to (religious) law: the intent is that this should be the correct or standard way to
handle input characters. See the New Hacker’s Dictionary for a long discussion of the term.

5 February 2005 02:09

Chapter 15: Terminal Drivers 237

Example 15−1: (continued)

ioctl (stdin, TIOCSETN, &raw_status); /* set the new terminal flags */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

ioctl (stdin, TIOCSETN, &initial_status); /* set the old terminal flags */

With the System V termio driver, it would look like Example 15-2:

Example 15−2:

struct termio initial_status; /* initial termio flags */
struct termio noicanon_status; /* and the same with icanon reset */

ioctl (stdin, TCGETA, &initial_status); /* get attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_lflag &= ˜ICANON; /* and turn icanon off */
ioctl (stdin, TCSETA, &noicanon_status); /* set non-canonical mode */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

ioctl (stdin, TCSETA, &initial_status)) /* reset old terminal mode */

Don’t rely on code like this to be termio code: termios code can look almost identical. Cor-
rect termios code uses the termios functions which we will look at on page 265, and looks like
Example 15-3:

Example 15−3:

struct termios initial_status; /* initial termios flags */
struct termios noicanon_status; /* and the same with icanon reset */

tcgetattr (stdin, &initial_status)l /* get current attributes */
noicanon_status = initial_status; /* make a copy */
noicanon_status.c_lflag &= ˜ICANON; /* and turn icanon off */

tcsetattr (stdin, TCSANOW, &noicanon_status); /* set non-canonical mode */
puts ("? ");
if ((reply = getchar ()) != ’\n’) /* get a reply */
puts ("\n"); /* and finish the line */

tcsetattr (stdin, TCSANOW, &initial_status); /* reset old terminal mode */

Terminology
Before we start, it’s a good idea to be clear about a few terms that are frequently confused:

• All terminal drivers buffer I/O in two queues, an input queue and an output queue. The
input queue contains characters that the user has entered and the process has not yet read.
The output queue contains characters that the process has written but that have not yet
been output to the terminal. These queues are maintained inside the terminal driver.
Don’t confuse them with buffers maintained in the process data space by the stdio rou-
tines.

5 February 2005 02:09

238

• The term flush can mean to discard the contents of a queue, or to wait until they hav e all
been output to the terminal. Most of the time it means to discard the contents, and that’s
how we’ll use it in this chapter.

• The term drain means to wait until the contents of the output queue have been written to
the terminal. This is also one of the meanings of flush.

• Special characters, frequently called control characters, are input characters that cause
the terminal driver to do something out of the ordinary. For example, CTRL-D usually
causes the terminal driver to return an end-of-file indication. The term special charac-
ters is the better term, since you can set them to characters that are not ASCII control
characters. For example, even today, the default erase character in System V is #: it’s a
special character, but not an ASCII control character.

• The baud rate of a modem is the number of units of information it can transmit per sec-
ond. Modems are analogue devices that can represent multiple bits in a single unit of
information — modern modems encode up to 6 bits per unit. For example, a modern
V.32bis modem will transfer 14400 bits per second, but runs at only 2400 baud. Baud
rates are of interest only to modem designers.

• As the name indicates, the bit rate of a serial line indicates how many bits it can transfer
per second. Bit rates are often erroneously called baud rates, even in official documenta-
tion. The number of bytes transferred per second depends on the configuration: nor-
mally, an asynchronous serial line will transmit one start bit and one stop bit in addition
to the data, so it transmits 10 bits per byte.

• break is an obsolescent method to signal an unusual condition over an asynchronous line.
Normally, a continuous voltage or current is present on a line except when data is being
transferred. Break effectively breaks (disconnects) the line for a period between .25 and
.5 second. The serial hardware detects this and reports it separately. One of the prob-
lems with break is that it is intimately related to the serial line hardware.

• DCE and DTE mean data communication equipment and data terminal equipment
respectively. In a modem connection, the modem is the DCE and both terminal and
computer are DTEs. In a direct connect, the terminal is the DTE and the computer is the
DCE. Different cabling is required for these two situations.

• RS-232, also known as EIA-232, is a standard for terminal wiring. In Europe, it is some-
times referred to as CCITT V.24, though V.24 does not in fact correspond exactly to
RS-232. It defines a number of signals, listed in Table 15-1.

Table 15−1: RS-232 signals

5 February 2005 02:09

Chapter 15: Terminal Drivers 239

Table 15−1: RS-232 signals (continued)

RS-232
name pin purpose

PG 1 Protective ground. Used for electrical grounding only.
TxD 2 Transmitted data.
RxD 3 Received data.
RTS 4 Request to send. Indicates that the device has data to output.
CTS 5 Clear to send. Indicates that the device can receive input. Can be used

with RTS to implement flow control.
DSR 6 Data set ready. Indicates that the modem (data set in older parlance) is

powered on.
SG 7 Signal ground. Return for the other signals.
DCD 8 Carrier detect. Indicates that the modem has connection with another

modem.
DTR 20 Data terminal ready. Indicates that the terminal or computer is ready to

talk to the modem.
RI 22 Ring indicator. Raised by a modem to indicate that an incoming call is

ringing.

For more details about RS-232, see RS-232 made easy, second edition by Martin Seyer.

Terminal data structures
In this section, we’ll take a detailed look at the data structures you’re likely to encounter when
porting software from a different platform. I hav e included typical literal values for the
macros. Don’t ever use these values! They’re not guaranteed to be correct for every imple-
mentation, and they’re included only to help you if you find that the program includes literals
rather than macro names. When writing code, always use the names.

Old terminal driver definitions
In the Seventh Edition, most ioctl calls that took a parameter referred to a struct sgttyb,
which was defined in /usr/include/sgtty.h:

struct sgttyb
{
char sg_ispeed; /* input bit rate code */
char sg_ospeed; /* output bit rate code */
char sg_erase; /* erase character */
char sg_kill; /* kill character */
int sg_flags; /* Terminal flags (see Table 15-3) */
char sg_nldly; /* delay after \n character */
char sg_crdly; /* delay after \r character */
char sg_htdly; /* delay after tab character */
char sg_vtdly; /* delay after vt character */
char sg_width; /* terminal line width */

5 February 2005 02:09

240

char sg_length; /* terminal page length */
};

The bit rates in sg_ispeed and sg_ospeed are encoded, and allow only a certain number of
speeds:

Table 15−2: Seventh Edition bit rate codes

Parameter value meaning

B0 0 hang up phone
B50 1 50 bits/second
B75 2 75 bits/second
B110 3 110 bits/second
B134 4 134.5 bits/second
B150 5 150 bits/second
B200 6 200 bits/second
B300 7 300 bits/second
B600 8 600 bits/second
B1200 9 1200 bits/second
B1800 10 1800 bits/second
B2400 11 2400 bits/second
B4800 12 4800 bits/second
B9600 13 9600 bits/second
EXTA 14 External A
EXTB 15 External B

The field sg_flags contains a bit map specifying the following actions:

Table 15−3: Seventh Edition tty flags

Parameter value value meaning
(octal) (hex)

XTABS 02000 0x400 Replace output tabs by spaces.
INDCTL 01000 0x200 Echo control characters as ˆa, ˆb etc.
SCOPE 0400 0x100 Enable neat erasing functions on display terminals

("scopes").
EVENP 0200 0x80 Even parity allowed on input (most terminals).
ODDP 0100 0x40 Odd parity allowed on input.
RAW 040 0x20 Raw mode: wake up on all characters, 8-bit interface.
CRMOD 020 0x10 Map CR into LF; echo LF or CR as CR-LF.
ECHO 010 0x8 Echo (full duplex).
LCASE 04 0x4 Map upper case to lower on input.
CBREAK 02 0x2 Return each character as soon as typed.

5 February 2005 02:09

Chapter 15: Terminal Drivers 241

Table 15−3: Seventh Edition tty flags (continued)

Parameter value value meaning
(octal) (hex)

TANDEM 01 0x1 Automatic flow control.

A second structure defines additional special characters that the driver interprets in cooked
mode. They are stored in a struct tchars, which is also defined in /usr/include/sgtty.h:

struct tchars
{
char t_intrc; /* interrupt (default DEL) */
char t_quitc; /* quit (default ˆ\) */
char t_startc; /* start output (default ˆQ)*/
char t_stopc; /* stop output (default ˆS) */
char t_eofc; /* end-of-file (default ˆD) */
char t_brkc; /* input delimiter (like nl, default -1) */
};

Each of these characters can be disabled by setting it to -1 (octal 0377), as is done with the
default t_brkc. This means that no key can invoke its effect.

termio and termios structures
The System V terminal driver defines a struct termio to represent the data that the Seventh
Edition driver stored in sgttyb and tchars. In POSIX.1 termios, it is called struct
termios. Both are very similar: compared to the Seventh Edition, they appear to have been
shorter by moving the special characters, which in sgttyb were stored as individual ele-
ments, into the array c_cc:

struct termio
{
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc [NCC]; /* special chars */
long c_ispeed; /* input speed, some termios */
long c_ospeed; /* output speed, some termios */
};

The variable c_line specifies the line discipline. It is defined in termio, and not in the
POSIX.1 termios standard, but some System V versions of termios have it anyway. NCC is the
number of special characters. We’ll look at them after the flags.

Not all versions of System V define the members c_ispeed and c_ospeed. Instead, they
encode the line speed in c_cflag. The correct way to access them is via the termios utility
functions cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed and cfsetspeed,
which we will discuss on page 265. To make matters worse, some older System V termios
implementations supplied c_ispeed and c_ospeed, but the implementation didn’t use them.
In addition, many systems cannot handle different input and output speeds, so setting one

5 February 2005 02:09

242

speed automatically sets the other as well.

c_iflag, c_oflag, c_cflag and c_lflag (a total of 128 possible bits) take the place of the
Seventh Edition sg_flags.

c_iflag

c_iflag specifies how the driver treats terminal input:

Table 15−4: termios c_iflag bits

Param- value value meaning
eter (SysV) (BSD)

IGNBRK 0x1 0x1 Ignore break condition.
BRKINT 0x2 0x2 Generate a SIGINT signal on break.
IGNPAR 0x4 0x4 Ignore characters with parity errors.
PARMRK 0x8 0x8 If a parity or framing error occurs on input, accept it

and insert into the input stream the three-character se-
quence 0xff, 0, and the character received.

INPCK 0x10 0x10 Enable input parity check.
ISTRIP 0x20 0x20 Strip bit 7 from character.
INLCR 0x40 0x40 Map NL to CR on input.
IGNCR 0x80 0x80 Ignore CR.
ICRNL 0x100 0x100 Map CR to NL on input.
IUCLC1 0x200 Map uppercase to lowercase on input.
IXON 0x400 0x200 Enable output flow control with XON/XOFF (CTRL-

S/CTRL-Q).
IXANY 0x800 0x800 Allow any character to restart output after being

stopped by CTRL-S.
IXOFF 0x1000 0x400 Enable input flow control with XON/XOFF.
CTSFLOW1 0x2000 Enable CTS protocol for a modem line.
RTSFLOW1 0x4000 Enable RTS signaling for a modem line.
IMAXBEL2 0x2000 0x2000 Ring the terminal bell when the input queue is full.

1 not in POSIX.1 or BSD.
2 not in POSIX.1 and some versions of System V.

A couple of these flags are not portable:

• IUCLC maps lower case to upper case: if you enter a lower case character, it is converted
to an upper case character and echos that way. Many people consider this a bug, not a
feature. There’s no good way to implement this on a non-System V system. If you
really want to have this behaviour, you’ll have to turn off echo and provide an echo from
the program.

• CTSFLOW and RTSFLOW specify flow control via the RS-232 signals CTS and RTS. These
are control flags, of course, not input flags, but some versions of System V put them here

5 February 2005 02:09

Chapter 15: Terminal Drivers 243

for backward compatibility with XENIX. Some other versions of System V don’t define
them at all, and BSD systems and yet other System V systems supply them in c_cflags,
where they belong.

c_oflag specifies the behaviour on output.

Table 15−5: termios c_oflag bits

Param- value value meaning
eter (SysV) (BSD)

OPOST 0x1 0x1 Postprocess output.
OLCUC1 0x2 Map lower case to upper on output.
ONLCR 0x4 0x2 Map NL to CR-NL on output.
OCRNL 0x8 0x8 Map CR to NL on output.
ONOCR 0x10 0x10 Suppress CR output at column 0.
ONLRET 0x20 0x20 NL performs CR function.
OFILL 0x40 0x40 Use fill characters for delay.
OFDEL 0x80 0x80 Fill is DEL if set, otherwise NUL.*

NLDLY1 0x100 Mask bit for new-line delays:
NL0 0x0 No delay after NL.
NL1 0x100 One character delay after NL.

CRDLY1 0x600 Mask bits for carriage-return delays:
CR0 0x0 No delay after CR.
CR1 0x200 One character delay after CR.
CR2 0x400 Tw o characters delay after CR.
CR3 0x600 Three characters delay after CR.

TABDLY1 0x18000 Mask bits for horizontal-tab delays:
TAB0 0x0 No delay after HT.
TAB1 0x800 One character delay after HT.
TAB2 0x1000 Tw o characters delay after HT.
TAB3 0x1800 Expand tabs to spaces.

BSDLY1 0x2000 Mask bit for backspace delays:
BS0 0x0 No delay after BS.
BS1 0x2000 One character delay after BS.

VTDLY1 0x4000 Mask bit for vertical-tab delays:
VT0 0x0 No delay after VT.
VT1 0x4000 One character delay after VT.

FFDLY1 0x8000 Mask bit for form-feed delays:
FF0 0x0 No delay after FF.
FF1 0x8000 One character delay after FF.

* The ASCII character represented by binary 0 (the C character constant \0). Not to be confused with
the null pointer, which in C is usually called NULL.

5 February 2005 02:09

244

Table 15−5: termios c_oflag bits (continued)
1 not in POSIX.1 or BSD.

A number of these flags are not portable:

• System V supplies a large number of flags designed to compensate for mechanical delays
in old hardcopy terminal equipment. It’s doubtful that any of this is needed nowadays.
If you do have an unbuffered hardcopy terminal connected to your BSD machine, and it
loses characters at the beginning of a line or a page, you should check whether CTS/RTS
flow control might not help. Or you could buy a more modern terminal.

• OLCUC is obsolete, of course, but if that old hardcopy terminal also doesn’t support
lower-case, and it doesn’t upshift lower-case characters automatically, you’ll have to do it
programatically.

c_cflag specifies hardware control aspects of the terminal interface:

Table 15−6: termios c_cflag bits

Parameter value value meaning
(SysV) (BSD)

CBAUD1 0xf Bit rate
B0 0 Hang up
B50 0x1 50 bps
B75 0x2 75 bps
B110 0x3 110 bps
B134 0x4 134 bps
B150 0x5 150 bps
B200 0x6 200 bps
B300 0x7 300 bps
B600 0x8 600 bps
B1200 0x9 1200 bps
B1800 0xa 1800 bps
B2400 0xb 2400 bps
B4800 0xc 4800 bps
B9600 0xd 9600 bps
B19200 0xe 19200 bps
EXTA 0xe External A
B38400 0xf 38400 bps
EXTB 0xf External B

CSIZE 0x30 0x300 Mask bits for character size:
CS5 0x0 0x0 5 bits
CS6 0x10 0x100 6 bits
CS7 0x20 0x200 7 bits
CS8 0x30 0x300 8 bits

5 February 2005 02:09

Chapter 15: Terminal Drivers 245

Table 15−6: termios c_cflag bits (continued)

Parameter value value meaning
(SysV) (BSD)

CSTOPB 0x40 0x400 Send two stop bits (if not set, send 1 stop bit).
CREAD 0x80 0x800 Enable receiver.
PARENB 0x100 0x1000 Enable parity.
PARODD 0x200 0x2000 Set odd parity if set, otherwise even.
HUPCL 0x400 0x4000 Hang up on last close.
CLOCAL 0x800 0x8000 Disable modem control lines.
RCV1EN3 0x1000 see below
XMT1EN3 0x2000 see below
LOBLK3 0x4000 Block layer output.
CTSFLOW1 0x10000 CTS flow control of output.
CCTS_OFLOW2 0x10000 CTS flow control of output.
CRTSCTS2 0x10000 CTS flow control of output (alternative symbol).
RTSFLOW1 0x20000 RTS flow control of input.
CRTS_IFLOW2 0x20000 RTS flow control of input.
MDMBUF2 0x100000 Flow control output via Carrier.

1 speeds are encoded differently in BSD—see below.
2 not in POSIX.1 or System V.
3 not in POSIX.1 or BSD.

Again, some of these flags are only available on specific platforms:

• RCV1EN and XMT1EN are defined in some System V header files, but they are not docu-
mented.

• BSD systems supply CRTS_IFLOW and CCTS_OFLOW for RS-232 flow control. Some
System V systems supply RTSFLOW and CTSFLOW to mean the same thing, but other Sys-
tem V systems don’t support it, and other systems again put these flags in c_iflag.

c_lflag specifies the behaviour specific to the line discipline. This flag varies so much
between System V and BSD that it’s easier to put them in separate tables. Table 15-7
describes the standard System V line discipline, and Table 15-8 describes the standard BSD
line discipline,

Table 15−7: System V termios c_lflag bits

Param- value meaning
eter

ISIG 0x1 Allow the characters INTR, QUIT, SUSP and DSUSP to generate signals.
ICANON 0x2 Enable canonical input (erase and kill processing).

5 February 2005 02:09

246

Table 15−7: System V termios c_lflag bits (continued)

Param- value meaning
eter

XCASE 0x4 In conjunction with ICANON, map upper/lower case to an upper-case only
terminal. Lower case letters are displayed in upper case, and upper case
letters are displayed with a preceding backslash (\).

ECHO 0x8 Enable echo.
ECHOE 0x10 Erase character removes character from screen.
ECHOK 0x20 Echo NL after line kill character.
ECHONL 0x40 Echo NL even if echo is off.
NOFLSH 0x80 Disable flush after interrupt or quit.

Here’s the BSD version:

Table 15−8: BSD termios c_lflag bits

Parameter value meaning

ECHOKE1 0x1 Line kill erases line from screen.
ECHOE 0x2 Erase character removes character from screen.
ECHOK 0x4 Echo NL after line kill character.
ECHO 0x8 Enable echo.
ECHONL 0x10 Echo NL even if echo is off.
ECHOPRT1 0x20 Visual erase mode for hardcopy.
ECHOCTL1 0x40 Echo control chars as ˆ(Char).
ISIG 0x80 Enable signals INTR, QUIT, SUSP and DSUSP.
ICANON 0x100 Enable canonical input (erase and kill processing).
ALTWERASE1 0x200 Use alternate WERASE algorithm. Instead of erasing back to

the first blank space, erase back to the first non-alphanumeric
character.

IEXTEN 0x400 Enable DISCARD and LNEXT.
EXTPROC1 0x800 This flag carries the comment "External processing". Apart

from that, it appears to be undocumented.
TOSTOP 0x400000 If a background process attempts output, send a SIGTTOU to

it. By default this stops the process.
FLUSHO1 0x800000 Status return only: output being flushed.
NOKERNINFO1 0x2000000 Prevent the STATUS character from displaying information on

the foreground process group.
PENDIN1 0x20000000 Pending input is currently being redisplayed.
NOFLSH 0x80000000 Don’t flush input and output queues after receiving SIGINT or

SIGQUIT.

1 not in POSIX.1.

5 February 2005 02:09

Chapter 15: Terminal Drivers 247

Converting the c_lflag bits is even more of a problem:

• XCASE is part of the System V upper case syndrome that we saw with c_iflag and
c_oflag.

• BSD offers a number of echo flags that are not available in System V. In practice, this is
a cosmetic difference in the way input works. Consider a BSD program with a line like:

term.c_lflag = ECHOKE | ECHOE | ECHOK | ECHOCTL;

This will fail to compile under System V because ECHOKE and ECHOCTL are undefined.
You can probably ignore these flags, so the way to fix it would be something like:

term.c_lflag = ECHOE | ECHOK
#ifdef ECHOKE

| ECHOKE
#endif
#ifdef ECHOCTL

| ECHOCTL
#endif

;

Note the lonesome semicolon on the last line.

• The flags FLUSHO and PENDIN are status flags that cannot be set. There’s no way to get
this information in System V.

• NOKERNINFO refers to the STATUS character, which we will see below. This is not sup-
ported in System V.

special characters

The number of special characters has increased from 6 in the Seventh Edition (struct
tchars) to 8 in termio and a total of 20 in termios (though 4 of the termios special characters
are “reserved”— in other words, not defined). Despite this number, there is no provision for
redefining CR and NL.

Table 15−9: termio and termios special characters

Index in Index in
c_cc Default c_cc Default

Name (SysV) (SysV) (BSD) (BSD) Function

CR (none) \r (none) \r Go to beginning of line. In
canonical and cooked modes,
complete a read request.

NL (none) \n (none) \n End line. In canonical and
cooked modes, complete a read
request.

VINTR 0 DEL 8 CTRL-C Generate an SIGINT signal.

5 February 2005 02:09

248

Table 15−9: termio and termios special characters (continued)

Index in Index in
c_cc Default c_cc Default

Name (SysV) (SysV) (BSD) (BSD) Function

VQUIT 1 CTRL-| 9 CTRL-| Generate a SIGQUIT signal.
VERASE 2 #4 3 DEL Erase last character.
VKILL 3 @4 5 CTRL-U Erase current input line.
VEOF 4 CTRL-D 0 CTRL-D Return end-of-file indication.
VEOL 5 NUL 1 \377 Alternate end-of-line character.
VEOL21 6 NUL 2 \377 Alternate end-of-line character.
VSWTCH1, 2 7 NUL shl layers: switch shell.
VSTART 8 CTRL-Q 12 CTRL-Q Resume output after stop.
VSTOP 9 CTRL-S 13 CTRL-S Stop output.
VSUSP 10 CTRL-Z 10 CTRL-Z Generate a SIGTSTP signal

when typed.
VDSUSP1 11 CTRL-Y 11 CTRL-Y Generate a SIGTSTP signal

when the character is read.
VREPRINT1 12 CTRL-R 6 CTRL-R Redisplay all characters in the

input queue (in other words,
characters that have been input
but not yet read by any
process). The term "print" re-
calls the days of harcopy termi-
nals.

VDISCARD1 13 CTRL-O 15 CTRL-O Discard all terminal output until
another DISCARD character ar-
rives, more input is typed or the
program clears the condition.

VWERASE1 14 CTRL-W 4 CTRL-W Erase the preceding word.
VLNEXT1 15 CTRL-V 14 CTRL-V Interpret next character literally.
VSTATUS1,3 18 \377 Send a SIGINFO signal to the

foreground process group. If
NOKERNINFO is not set, the ker-
nel also prints a status message
on the terminal.

1 not in POSIX.1.
2 shl layers are a System V method of multiplexing several shells on one terminal. They are
not supported on BSD systems.
3 not supported on System V.
4 These archaic, teletype-related values are still the default for System V. The file
/usr/include/sys/termio.h contains alternative definitions (VERASE set to CTRL-H and VKILL
set to CTRL-X), but these need to be specifically enabled by defining the preprocessor variable
_NEW_TTY_CTRL.

5 February 2005 02:09

Chapter 15: Terminal Drivers 249

You will frequently see these names without the leading V. For example, the stty program
refers to VQUIT as QUIT.

Terminal driver modes
Depending on the driver, it looks as if you have a choice of two or three operational modes on
input:

• With the termio and termios drivers, you have the choice of canonical and non-canonical
mode.

• With the old terminal driver, you have the choice of raw, cooked and cbreak modes.

This distinction is not as clear-cut as it appears: in fact, you can set up both drivers to do most
things you want.

Canonical mode
To quote Richard Stevens’ Advanced Programming in the UNIX environment: “Canonical
mode is simple”—it takes only about 30 pages for a brief description. For an even simpler
description: everything in the rest of this chapter applies to canonical mode unless otherwise
stated.

Non-canonical mode
Non-canonical mode ignores all special characters except INTR, QUIT, SUSP, STRT, STOP,
DISCARD and LNEXT. If you don’t want these to be interpreted, you can disable them by
setting the corresponding entry in tchars to _POSIX_VDISABLE.

The terminal mode has a strong influence on how a read from a terminal completes. In canon-
ical mode, a read request will complete when the number of characters requested has been
input, or when the user enters one of the characters CR, NL, VEOL or (where supported)
VEOL2. In non-canonical mode, no special character causes a normal read completion. The
way a read request completes depends on two variables, MIN and TIME. MIN represents a
minimum number of characters to be read, and TIME represents a time in units of 0.1 second.
There are four possible cases:

1. Both MIN and TIME are non-zero. In this case, a read will complete when either MIN
characters have been entered or TIME/10 seconds have passed since a character was
entered. The timer starts when a character is entered, so at least one character must be
entered for the read to complete.

2. MIN is non-zero, TIME is zero. In this case, the read will not complete until MIN char-
acters have been entered.

3. MIN is zero and TIME is non-zero. The read will complete after entering one character
or after TIME/10 seconds. In the latter case, 0 characters are returned. This is not the
same as setting MIN to 1 and leaving TIME as it is: in this case, the read would not

5 February 2005 02:09

250

complete until at least one character is entered.

4. Both MIN and TIME are set to 0. In this case, read returns immediately with any char-
acters that may be waiting.

If MIN is non-zero, it overrides the read count specified to read, even if read requests less
than MIN characters: the remaining characters are kept in the input queue for the next read
request. This can have the unpleasant and confusing effect that at first nothing happens when
you type something in, and then suddenly multiple reads complete.

Non-canonical mode does not interpret all the special characters, but it needs space to store
MIN and TIME. In 4.4BSD, two of the reserved characters are used for this purpose. Most
other implementations, including XENIX, System V and some older BSDs do it differently,
and this can cause problems:

• The value of VEOF is used for VMIN. This value is normally CTRL-D, which is decimal
4: if you switch from canonical to non-canonical mode and do not change MIN, you may
find that a read of a single character will not complete until you enter a total of four char-
acters.

• The value of VEOL is used for TIME. This is normally 0.

Raw mode
Raw mode does almost no interpretation of the input stream. In particular, no special charac-
ters are recognized, and there is no timeout. The non-canonical mode variables MIN and
TIME do not exist. The result is the same as setting MIN to 1 and TIME to 0 in non-canonical
mode.

Cooked mode
The cooked mode of the old terminal driver is essentially the same as canonical mode, within
the limitations of the driver data structures—termios offers some features that are not avail-
able with the old terminal driver, such as alternate end-of-line characters.

Cbreak mode
To quote the Seventh Edition manual:

CBREAK is a sort of half-cooked (rare?) mode.

In terms of termios, it is quite close to non-canonical mode: the only difference is that cbreak
mode turns off echo. Non-canonical mode does not specify whether echo is on or off.

Emulating old terminal driver modes
Table 15-10 illustrates how you can define old driver terminal modes with termios. You’ll see
that a large number of entries are not defined: raw and cbreak modes do not specify how these

5 February 2005 02:09

Chapter 15: Terminal Drivers 251

parameters are set. You can set them to whatever you feel appropriate.

Table 15−10: Defining terminal modes with termios

Flag raw cbreak
mode mode

BRKINT off on

INPCK off on

ISTRIP off not defined

ICRNL off not defined

IXON off not defined

OPOST off not defined

CSIZE CS8 not defined

PARENB off not defined

ECHO off off

ISIG off not defined

ICANON off off

IEXTEN off not defined

VMIN 1 1

VTIME 0 0

gtty and stty
You may still occasionally run into the system calls stty and gtty, which are leftovers from
the Seventh Edition. You can replace stty with the ioctl function TIOCSETP, and you can
replace gtty with the ioctl request TIOCGETP. Read more on both these requests on page
257.

The Linux terminal driver
Linux has the great advantage of being a recent development, so it doesn’t hav e a number of
the warts of older terminal drivers. It goes to some trouble to be compatible, however:

• In addition to POSIX.1 termios, the kernel also directly supports System V termio.

• The library libbsd.a includes ioctl calls for the old terminal driver, which Linux users
call the BSD driver.

• The only line discipline you can expect to work under Linux is the standard tty line disci-
pline N_TTY.

5 February 2005 02:09

252

ioctl
ioctl is the file system catchall: if there isn’t any other function to do the job, then somebody
will bend ioctl to do it. Nowhere is this more evident than in terminal I/O handling. As a
result of this catchall nature, it’s not easy to represent ioctl parameters in C.

We’ll look at the semantics first. The ioctl function call takes three parameters:

1. A file number.

2. A request, which we’ll look at in more detail in the next section.

3. When present, the meaining is defined by the request. It could be an integer, another
request code or a pointer to some structure defined by the request.

ioctl request codes
The key to understanding ioctl is the request code. Request codes are usually subdivided
into a number of fields. For example, 4.4BSD defines four fields:

Bit 31 29 28 16 15 8 7 0

type length ioctl type function subcode

• The first three bits specify the type of parameter. IOC_VOID (0x20 in the first byte) spec-
ifies that the request takes no parameters, IOC_OUT (0x40 in the first byte) specifies that
the parameters are to be copied out of the kernel (in other words, that the parameters are
to be returned to the user), and IOC_IN (0x80 in the first byte) specifies that the parame-
ters are to be copied in to the kernel (they are to be passed to ioctl).

• The next 13 bits specify the length of the parameter in bytes.

• The next byte specifies the type of request. This is frequently a mnemonic letter. In
4.4BSD, this field is set to the lower-case letter t for terminal ioctls.

• Finally, the last byte is a number used to identify the request uniquely.

This encoding depends heavily on the operating system. Other systems (especially, of course,
16 bit systems) encode things differently, but the general principle remains the same.

Both the request code and the third parameter, where present, do not map easily to C language
data structures. As a result, the definition of the function varies significantly. For example,
XENIX and BSD declare it as:

#include <sys/ioctl.h>
int ioctl (int fd, unsigned long request, char *argp)

and System V.4 has

5 February 2005 02:09

Chapter 15: Terminal Drivers 253

#include <unistd.h>
int ioctl (int fs, int request, /* arg */ ...);

Strictly speaking, since the request code is not a number, both int and unsigned long are
incorrect, but they both do the job.

When debugging a program, it’s not always easy to determine which request has been passed
to ioctl. If you have the source code, you will see something like

ioctl (stdin, TIOCGETA, &termstat);

Unfortunately, a number of ioctl calls are embedded in libraries to which you probably
don’t hav e source, but you can figure out what’s going on by setting a breakpoint on ioctl.
In this example, when you hit the breakpoint, you will see something like:

(gdb) bt
#0 ioctl (file=0, request=1076655123, parameter=0xefbfd58c "") at ioctl.c:6
#1 0x10af in main () at foo.c:12

The value of request looks completely random. In hexadecimal it starts to make a little
more sense:

(gdb) p/x request
$1 = 0x402c7413

If we compare this with the request code layout in the example above, we can recognize a fair
amount of information:

• The first byte starts with 0x40, IOC_OUT: the parameter exists and defines a return value.

• The next 13 bits are 0x2c, the length to be returned (this is the length of struct
termios).

• The next byte is 0x74, the ASCII character t, indicating that this is a terminal ioctl
request.

• The last byte is 0x13 (decimal 19).

It’s easy enough to understand this when it’s deciphered like this, but doing it yourself is a lot
different. The first problem is that there is no agreed place where the ioctl requests are
defined. The best place to start is in the header file sys/ioctl.h, which in the case of 4.4BSD
will lead you to the file sys/ioccom.h (sys/sys/ioccom.h in the 4.4BSD distribution). Here you
will find code like:

#define IOCPARM_MASK 0x1fff /* parameter length, at most 13 bits */
#define IOCPARM_LEN(x) (((x) >> 16) & IOCPARM_MASK)
#define IOCBASECMD(x) ((x) & ˜(IOCPARM_MASK << 16))
#define IOCGROUP(x) (((x) >> 8) & 0xff)
#define IOC_VOID 0x20000000 /* no parameters */
#define IOC_OUT 0x40000000 /* copy out parameters */
#define IOC_IN 0x80000000 /* copy in parameters */

These define the basic parts of the request. Next come the individual types of request:

5 February 2005 02:09

254

#define _IOC(inout,group,num,len) \ pass a structure of length len as parameter
(inout | ((len & IOCPARM_MASK) << 16) | ((group) << 8) | (num))

#define _IO(g,n) _IOC(IOC_VOID, (g), (n), 0) No parameter
#define _IOR(g,n,t) _IOC(IOC_OUT, (g), (n), sizeof(t)) Return parameter from kernel
#define _IOW(g,n,t) _IOC(IOC_IN, (g), (n), sizeof(t)) Pass parameter to kernel
/* this should be _IORW, but stdio got there first */
#define _IOWR(g,n,t) _IOC(IOC_INOUT, (g), (n), sizeof(t)) Pass and return parameter

With these building blocks, we can now understand the real definitions:

#define TIOCSBRK _IO(’t’, 123) /* set break bit */
#define TIOCCBRK _IO(’t’, 122) /* clear break bit */
#define TIOCSDTR _IO(’t’, 121) /* set data terminal ready */
#define TIOCCDTR _IO(’t’, 120) /* clear data terminal ready */
#define TIOCGPGRP _IOR(’t’, 119, int) /* get pgrp of tty */
#define TIOCSPGRP _IOW(’t’, 118, int) /* set pgrp of tty */

These define four requests without parameters (_IO), a request that returns an int parameter
from the kernel (_IOR), and a request that passes an int parameter to the kernel (_IOW).

Terminal ioctls
For a number of reasons, it’s difficult to categorize terminal driver ioctl calls:

• As the terminal driver has changed over the course of time, some implementors have
chosen to keep the old ioctl codes and give them new parameters. For example, the
Seventh Edition call TIOCGETA returned the terminal parameters to a struct sgttyb.
The same call in System V returns the values to a struct termio, and in 4.4BSD it
returns the values to a struct termios.

• The documentation for many ioctl calls is extremely hazy: although System V supports
the old terminal driver discipline, the documentation is very scant. Just because an
ioctl function is not documented in the man pages doesn’t mean that it isn’t supported:
it’s better to check in the header files (usually something like sys/termio.h or
sys/termios.h).

• Many ioctl calls seem to duplicate functionality. There are minor differences, but even
they are treacherous. For example, in the Seventh Edition the TIOCSETA function drains
the output queue and discards the content of the input queue before setting the terminal
state. The same function in 4.4BSD performs the function immediately. To get the Sev-
enth Edition behaviour, you need to use TIOCSETAF. The behaviour in System V is not
documented, which means that you may be at the mercy of the implementor of the device
driver: on one system, it may behave like the Seventh Edition, on another like 4.4BSD.

In the following sections, we’ll attempt to categorize the most frequent ioctl functions in the

5 February 2005 02:09

Chapter 15: Terminal Drivers 255

kind of framework that POSIX.1 uses for termios. Here’s an index to the mess:

Table 15−11: ioctl parameters

Name Function Parameter 3 Page

TCFLSH Flush I/O int * 263
TCGETA Get terminal state struct termio * 258
TCGETS Get terminal state struct termios * 258
TCSBRK Drain output, send break int * 261
TCSETA Set terminal state struct termio * 259
TCSETAF Drain I/O and set state struct termio * 259
TCSETAW Drain output and set state struct termio * 259
TCSETS Set terminal state struct termios * 258
TCSETSF Drain I/O and set state struct termios * 258
TCSETSW Drain output and set state struct termios * 258
TCXONC Set flow control int * 262
TIOCCBRK Clear break (none) 260
TIOCCDTR Clear DTR (none) 260
TIOCCONS Set console int * 264
TIOCDRAIN Drain output queue (none) 262
TIOCFLUSH Flush I/O int * 263
TIOCGETA Get current state struct termio * 256
TIOCGETC Get special chars struct tchars * 258
TIOCGETD Set line discipline int *ldisc 259
TIOCGETP Get current state struct sgttyb * 257
TIOCGPGRP Get process group ID pid_t * 263
TIOCGSID Get session ID pid_t * 264
TIOCGSOFTCAR Get DCD indication int * 265
TIOCGWINSZ Get window size struct winsize * 259
TIOCHPCL Hang up on clear (none) 258
TIOCMBIC Clear modem state bits int * 261
TIOCMBIS Set modem state bits int * 261
TIOCMGET Get modem state int * 261
TIOCMSET Set modem state int * 261
TIOCNXCL Clear exclusive use (none) 264
TIOCNOTTY Drop controlling terminal (none) 264
TIOCOUTQ Get output queue length int * 262
TIOCSBRK Send break (none) 260
TIOCSCTTY Set controlling tty (none) 263
TIOCSDTR Set DTR (none) 260
TIOCSETA Set terminal state struct sgttyb * 257
TIOCSETAF Drain I/O and set state struct termios * 257
TIOCSETAW Drain output and set state struct termios * 257

5 February 2005 02:09

256

Table 15−11: ioctl parameters (continued)

Name Function Parameter 3 Page

TIOCSETC Set special chars struct tchars * 258
TIOCSETD Set line discipline int *ldisc 259
TIOCSETN Set state immediately struct sgttyb * 257
TIOCSETP Get current state struct sgttyb * 257
TIOCSPGRP Set process group ID pid_t * 263
TIOCSSOFTCAR Set DCD indication int * 265
TIOCSTART Start output (none) 262
TIOCSTI Simulate input char * 262
TIOCSTOP Stop output (none) 262
TIOCSWINSZ Set window size struct winsize * 259

Terminal attributes
One of the most fundamental groups of ioctl requests get and set the terminal state. This
area is the biggest mess of all. Each terminal driver has its own group of requests, the request
names are similar enough to be confusing, different systems use the same request names to
mean different things, and even in termios, there is no agreement between BSD and System V
about the names of the requests.

Table 15-12 gives an overview.

Table 15−12: Comparison of sgttyb, termio and termios ioctls

Function sgtty termio termios termios

request request request request
(BSD) (System V)

Get current state TIOCGETA TCGETA TIOCGETA TCGETS

Get special chars TIOCGETC TCGETA TIOCGETA TCGETS

Set terminal state immediately TIOCSETN TCSETA TIOCSETA TCSETS

Drain output and set state TCSETAW TIOCSETAW TCSETSW

Drain I/O and set state TIOCSETA TCSETAF TIOCSETAF TCSETSF

Set special chars TIOCSETC TCSETAF TIOCSETAF TCSETSF

TIOCGETA

The call ioctl (fd, TIOCGETA, term) places the current terminal parameters in the struc-
ture term. The usage differs depending on the system:

• In the Seventh Edition, term was of type struct sgttyb *.

• In System V, term is of type struct termio *.

5 February 2005 02:09

Chapter 15: Terminal Drivers 257

• In 4.4BSD, term is of type struct termios *.

• The Seventh Edition request TIOCSETN only sets the terminal state described in the first
6 bytes of struct sgettyb.

TIOCSETA

The call ioctl (fd, TIOCSETA, term) sets the current terminal state from term. The
usage differs depending on the system:

• In the Seventh Edition, term was of type struct sgttyb *. The system drained the
output queue and flushed the input queue before setting the parameters.

• In System V.3, term is of type struct termio *. The drain and flush behaviour is not
documented.

• In 4.4BSD, term is of type struct termios *. The action is performed immediately
with no drain or flush. This is used to implement the tcsetattr function with the
TCSANOW option.

TIOCGETP and TIOCSETP

TIOCGETP and TIOCSETP are obsolete versions of TIOCGETA and TIOCSETA respectively.
They affect only the first 6 bytes of the sgttyb structure (sg_ispeed to sg_flags). These
requests correspond in function to the obsolete Seventh Edition system calls stty and gtty.

TIOCSETAW

The call ioctl (fd, TIOCSETAW, void *term) waits for any output to complete, then
sets the terminal state associated with the device. 4.4BSD uses this call to implement the
tcsetattr function with the TCSADRAIN option. In XENIX, the parameter term is of type
struct termio; in other systems is it of type struct termios.

TIOCSETAF

The call ioctl (fd, TIOCSETAF, void *term) waits for any output to complete, flushes
any pending input and then sets the terminal state. 4.4BSD uses this call to implement the
tcsetattr function with the TCSAFLUSH option. In XENIX, the parameter term is of type
struct termio, in other systems is it of type struct termios.

TIOCSETN

The call ioctl (fd, TIOCSETN, struct sgttyb *term) sets the parameters but does
not delay or flush input. This call is supported by System V.3. and the Seventh Edition. In
the Seventh Edition, this function works only on the first 6 bytes of the sgttyb structure.

5 February 2005 02:09

258

TIOCHPCL

The call ioctl (fd, TIOCHPCL, NULL) specifies that the terminal line is to be discon-
nected (hung up) when the file is closed for the last time.

TIOCGETC

The call ioctl (fd, TIOCGETC, struct tchars *chars) returns the terminal special
characters to chars.

TIOCSETC

The call ioctl (fd, TIOCSETC, struct tchars *chars) sets the terminal special char-
acters from chars.

TCGETS

The call ioctl (fd, TCGETS, struct termios *term) returns the current terminal
parameters to term. This function is supported by System V.4.

TCSETS

The call ioctl (fd, TCSETS, struct termios *term) immediately sets the current ter-
minal parameters from term. This function is supported by System V.4 and corresponds to
the 4.4BSD call TIOCSETA.

TCSETSW

The call ioctl (fd, TCSETSW, struct termios *term) sets the current terminal
parameters from term after all output characters have been output. This function is supported
by System V.4 and corresponds to the 4.4BSD call TIOCSETAW.

TCSETSF

The call ioctl (fd, TCSETSF, struct termios *term) flushes the input queue and
sets the current terminal parameters from term after all output characters have been output.
This function is supported by System V.4 and corresponds to the 4.4BSD call TIOCSETAF.

TCGETA

The call ioctl (fd, TCGETA, struct termio *term) stores current terminal parame-
ters in term. Not all termios parameters can be stored in a struct termio; you may find
it advantageous to use TCGETS instead (see above).

5 February 2005 02:09

Chapter 15: Terminal Drivers 259

TCSETA

The call ioctl (fd, TCSETA, struct termio *term) sets the current terminal status
from term. Parameters that cannot be stored in struct termio are not affected. This corre-
sponds to TCSETA, except that it uses a struct termio * instead of a struct termios *.

TCSETAW

The call ioctl (fd, TCSETAW, struct termio *term) sets the current terminal param-
eters from term after draining the output queue. This corresponds to TCSETW, except that it
uses a struct termio * instead of a struct termios *.

TCSETAF

The call ioctl (fd, TCSETAF, struct termio *term) input queue” flushes the input
queue and sets the current terminal parameters from term after all output characters have
been output. This corresponds to TCSETF, except that it uses a struct termio * instead of
a struct termios *.

TIOCGWINSZ

The call ioctl (fd, TIOCGWINSZ, struct winsize *ws) puts the window size infor-
mation associated with the terminal in ws. The window size structure contains the number of
rows and columns (and pixels if appropiate) of the devices attached to the terminal. It is set
by user software and is the means by which most full screen oriented programs determine the
screen size. The winsize structure is defined as:

struct winsize
{
unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, pixels */
unsigned short ws_ypixel; /* vertical size, pixels */
};

Many implementations ignore the members ws_xpixel and ws_ypixel and set them to 0.

TIOCSWINSZ

The call ioctl (fd, TIOCSWINSZ, struct winsize *ws) sets the window size associ-
ated with the terminal to the value at ws. If the new size is different from the old size, a SIG-
WINCH (window changed) signal is sent to the process group of the terminal. See TIOCG-
WINSZ for more details.

TIOCSETD

The call ioctl (fd, TIOCSETD, int *ldisc); changes the line discipline to ldisc.
Not all systems support multiple line disciplines, and both the available line disciplines and
their names depend on the system. Here are some typical ones:

5 February 2005 02:09

260

• OTTYDISC: In System V, the “old” (Seventh Edition) tty discipline.

• NETLDISC: The Berknet line discipline.

• NTTYDISC: In System V, the “new” (termio) tty discipline.

• TABLDISC: The Hitachi tablet discipline.

• NTABLDISC: The GTCO tablet discipline.

• MOUSELDISC: The mouse discipline.

• KBDLDISC: The keyboard line discipline.

• TTYDISC: The termios interactive line discipline.

• TABLDISC: The tablet line discipline.

• SLIPDISC: The Serial IP (SLIP) line discipline.

TIOCGETD

The call ioctl (fd, TIOCGETD, int *ldisc) returns the current line discipline at
ldisc. See the discussion in the section on TIOCSETD above.

Hardware control
TIOCSBRK

The call ioctl (fd, TIOCSBRK, NULL) sets the terminal hardware into break condition.
This function is supported by 4.4BSD.

TIOCCBRK

The call ioctl (fd, TIOCCBRK, NULL) clears a terminal hardware BREAK condition.
This function is supported by 4.4BSD.

TIOCSDTR

The call ioctl (fd, TIOCSDTR, NULL) asserts Data Terminal Ready (DTR). This func-
tion is supported by 4.4BSD. See page 239 for details of the DTR signal.

TIOCCDTR

The call ioctl (fd, TIOCCDTR, NULL) resets Data Terminal Ready (DTR). This function
is supported by 4.4BSD. See page 239 for details of the DTR signal.

5 February 2005 02:09

Chapter 15: Terminal Drivers 261

TIOCMSET

The call ioctl (fd, TIOCMSET, int *state) sets modem state. It is supported by
4.4BSD, SunOS and System V.4, but not all terminals support this call. *state is a bit map
representing the parameters listed in table Table 15-13:

Table 15−13: TIOCMSET and TIOCMGET state bits

Parameter meaning

TIOCM_LE Line Enable
TIOCM_DTR Data Terminal Ready
TIOCM_RTS Request To Send
TIOCM_ST Secondary Transmit
TIOCM_SR Secondary Receive
TIOCM_CTS Clear To Send
TIOCM_CAR Carrier Detect
TIOCM_CD Carrier Detect (synonym)
TIOCM_RNG Ring Indication
TIOCM_RI Ring Indication (synonym)
TIOCM_DSR Data Set Ready

TIOCMGET

The call ioctl (fd, TIOCMGET, int *state) returns the current state of the terminal
modem lines. See the description of TIOCMSET for the use of the bit mapped variable state.

TIOCMBIS

The call ioctl (fd, TIOCMBIS, int *state) sets the modem state in the same manner
as TIOMSET, but instead of setting the state bits unconditionally, each bit is logically ored
with the current state.

TIOCMBIC

The call ioctl (fd, TIOCMBIC, int *state) clears the modem state: each bit set in the
bitmap state is reset in the modem state. The other state bits are not affected.

TCSBRK

The call ioctl (fd, TCSBRK, int nobreak) drains the output queue and then sends a
break if nobreak is not set. This function is supported in System V and SunOS. In contrast
to the 4.4BSD function TIOCSBRK, TCSBRK resets the break condition automatically.

5 February 2005 02:09

262

TCXONC

The call ioctl (fd, TCXONC, int type) specifies flow control. It is supported in System
V and SunOS. Table 15-14 shows the possible values of type.

Table 15−14: TCXONC and tcflow type bits

Parameter value meaning

TCOOFF 0 suspend output
TCOON 1 restart suspended output
TCIOFF 2 suspend input
TCION 3 restart suspended input

Not all drivers support input flow control via TCXONC.

Queue control
TIOCOUTQ

The call ioctl (fd, TIOCOUTQ, int *num) sets the current number of characters in the
output queue to *num. This function is supported by BSD and SunOS.

TIOCSTI

The call ioctl (fd, TIOCSTI, char *cp) simulates typed input. It inserts the character
at *cp into the input queue. This function is supported by BSD and SunOS.

TIOCSTOP

The call ioctl (fd, TIOCSTOP, NULL) stops output on the terminal. It’s like typing
CTRL-S at the keyboard. This function is supported by 4.4BSD.

TIOCSTART

The call ioctl (fd, TIOCSTART, NULL) restarts output on the terminal, like typing CTRL-
Q at the keyboard. This function is supported by 4.4BSD.

TIOCDRAIN

The call ioctl (fd, TIOCDRAIN, NULL) suspends process execution until all output is
drained. This function is supported by 4.4BSD.

5 February 2005 02:09

Chapter 15: Terminal Drivers 263

TIOCFLUSH

The call ioctl (fd, TIOCFLUSH, int *what) flushes the input and output queues. This
function is supported by 4.4BSD, System V.3 and the Seventh Edition. The System V.3 and
Seventh Edition implementations ignore the parameter what and flush both queues. 4.4BSD
flushes the queues if the corresponding bits FREAD and FWRITE are set in *what. If no bits
are set, it clears both queues.

TCFLSH

The call ioctl (fd, TCFLSH, int type) flushes the input or output queues, depending
on the flags defined in Table 15-15.

Table 15−15: TCFLSH type bits

Parameter value meaning

TCIFLUSH 0 flush the input queue
TCOFLUSH 1 flush the output queue
TCIOFLUSH 2 flush both queues

This function is supported by System V. It does the same thing as TIOCFLUSH, but the seman-
tics are different.

Session control
TIOCGPGRP

The call ioctl (fd, TIOCGPGRP, pid_t *tpgrp) sets *tpgrp to the ID of the current
process group with which the terminal is associated. 4.4BSD uses this call to implement the
function tcgetpgrp.

TIOCSPGRP

The call ioctl (fd, TIOCSPGRP, pid_t *tpgrp) associates the terminal with the
process group tpgrp. 4.4BSD uses this call to implement the function tcsetpgrp.

TIOCSCTTY

TIOCSCTTY makes the terminal the controlling terminal for the process. This function is sup-
ported by BSD and SunOS systems. On BSD systems, the call is ioctl (fd, TIOCSCTTY,
NULL) and on SunOS systems it is ioctl (fd, TIOCSCTTY, int type). Normally the
controlling terminal will be set only if no other process already owns it. In those implementa-
tions that support type the superuser can set type to 1 in order to force the takeover of the
terminal, even if another process owns it. In 4.4BSD, you would first use the re voke system
call (see Chapter 14, File systems, page 213) to force a close of all file descriptors associated
with the file.

5 February 2005 02:09

264

System V and older versions of BSD have no equivalent of this function. In these systems,
when a process group leader without a controlling terminal opens a terminal, it automatically
becomes the controlling terminal. There are methods to ovverride this behaviour: in System
V, you set the flag O_NOCTTY when you open ther terminal. In old BSD versions, you subse-
quently release the control of the terminal with the TIOCNOTTY request, which we’ll look at in
the next section.

TIOCNOTTY

Traditionally, the first time a process without a controlling terminal opened a terminal, it
acquired that terminal as its controlling terminal. We saw in the section on TIOCSCTTY above
that this is no longer the default behaviour in BSD, and that you can override it in System V.
Older BSD versions, including SunOS, did not offer either of these choices. Instead, you had
to accept that you acquired a controlling terminal, and then release the controlling terminal
again with ioctl TIOCNOTTY. If you find this code in a package, and your system doesn’t sup-
port it, you can eliminate it. If your system is based on System V, you should check the call to
open for the terminal and ensure that the flag O_NOCTTY is set.

A second use for TIOCNOTTY was after a fork, when the child might want to relinquish the
controlling terminal. This can also be done with setsid (see Chapter 12, Kernel dependen-
cies, page 171).

TIOCGSID

The call ioctl (fd, TIOCGSID, pid_t *pid) stores the terminal’s session ID at pid.
This function is supported by System V.4.

Miscellaneous functions
TIOCEXCL

The call ioctl (fd, TIOCEXCL, NULL) sets exclusive use on the terminal. No further
opens are permitted except by root.

TIOCNXCL

The call ioctl (fd, TIOCNXCL, NULL) clears exclusive use of the terminal (see TIO-
CEXCL). Further opens are permitted.

TIOCCONS

The call ioctl (fd, TIOCCONS, int *on) sets the console file. If on points to a non-zero
integer, kernel console output is redirected to the terminal specified in the call. If on points to
zero, kernel console output is redirected to the standard console. This is usually used on work
stations to redirect kernel messages to a particular window.

5 February 2005 02:09

Chapter 15: Terminal Drivers 265

TIOCGSOFTCAR

The call ioctl (fd, TIOCGSOFTCAR, int *set) sets *set to 1 if the terminal “Data car-
rier detect” (DCD) signal or the software carrier flag is asserted, and to 0 otherwise. This
function is supported only in SunOS 4.X, and is no longer present in Solaris 2. See page 239
for a description of the DSR line.

TIOCSSOFTCAR

The call ioctl (fd, TIOCSSOFTCAR, int *set) is a method to fake a modem carrier
detect signal. It resets software carrier mode if *set is zero and sets it otherwise. In software
carrier mode, the TIOCGSOFTCAR call always returns 1; otherwise it returns the real value of
the DCD interface signal. This function is supported only in SunOS 4.X, and is no longer
present in Solaris 2.

termios functions
It should come as no surprise that people have long wanted a less bewildering interface to ter-
minals than the ioctl calls that we looked at in the previous section. In POSIX.1, a number
of new functions were introduced with the intent of bringing some sort of order into the chaos.
A total of 8 new functions were introduced, split into three groups. In addition, a further 6
auxiliary functions were added:

• tcgetattr and tcsetattr get and set terminal attributes using struct termios.

• tcgetpgrp and tcsetpgrp get and set the program group ID.

• tcdrain, tcflow, tcflush and tcsendbreak manipulate the terminal hardware.

• cfgetispeed, cfsetispeed, cfgetospeed, cfsetospeed, cfsetspeed and cfmak-
eraw are auxiliary functions to manipulate termios entries.

These functions do not add new functionality, but attempt to provide a more uniform inter-
face. In some systems, they are system calls, whereas in others they are library functions that
build on the ioctl interface. If you are porting a package that uses termios, and your sys-
tem doesn’t supply it, you have the choice of rewriting the code to use ioctl calls, or you can
use the 4.4BSD library calls supplied in the 4.4BSD Lite distribution
(usr/src/lib/libc/gen/termios.c). In the following sections we’ll look briefly at each function.

Direct termios functions
tcgetattr

tcgetattr corresponds to TIOCGETA described on page 256. It returns the current termios
state to term.

#include <termios.h>
int tcgetattr (int fd, struct termios *term)

5 February 2005 02:09

266

tcsetattr

tcgetattr sets the current termios state from term.

#include <termios.h>
int tcsetattr (int fd, int action, struct termios *t)

action can have one of the values listed in Table 15-16.

Table 15−16: tcsetattr action flags

Parameter meaning

TCSANOW Change terminal parameters immediately. Corresponds to the ioctl request
TIOCSETA.

TCSADRAIN First drain output, then change the parameters. Used when changing parame-
ters that affect output. Corresponds to the ioctl call TIOCSETAW.

TCSAFLUSH Discard any pending input, drain output, then change the parameters. Corre-
sponds to ioctl call TIOCSETAF.

See page 257 for details of the corresponding ioctl interfaces.

In addition, some implementations define the parameter TCSASOFT: if this is specified in addi-
tion to one of the above flags, the values of the fields c_cflag, c_ispeed and c_ospeed are
ignored. This is typically used when the device in question is not a serial line terminal.

tcgetpgrp

tcgetpgrp returns the ID of the current process group with which the terminal is associated.
It corresponds to the ioctl call TIOCGPGRP described on page 263.

#include <sys/types.h>
#include <unistd.h>
pid_t tcgetpgrp (int fd);

tcsetpgrp

tcsetpgrp associates the terminal with the process group tpgrp. It corresponds to the
ioctl call TIOCSPGRP described on page 263.

#include <sys/types.h>
#include <unistd.h>
int tcsetpgrp (int fd, pid_t pgrp_id);

tcdrain

tcdrain suspends the process until all output is drained. It corresponds to the ioctl call
TIOCDRAIN described on page 262.

5 February 2005 02:09

Chapter 15: Terminal Drivers 267

#include <termios.h>
int tcdrain (int fd);

tcflow

tcflow specifies flow control. It corresponds to the ioctl call TCXONC. See the description
of TCXONC on page 262 for the meaning of the parameter action.

#include <termios.h>
int tcflow (int fd, int action);

tcflush

tcflush flushes input or output queues for fd.

#include <termios.h>
int tcflush (int fd, int action);

action may take the values shown in Table 15-17.

Table 15−17: tcflush action bits

Parameter meaning

TCIFLUSH Flush data received but not read
TCOFLUSH Flush data written but not transmitted
TCIOFLUSH Flush both data received but not read and data written but not transmitted

This function corresponds to the ioctl request TCFLSH described on page 263.

tcsendbreak

tcsendbreak sends a break indication on the line. This is equivalent to the ioctl request
TCSBRK described on page 261.

#include <termios.h>
int tcsendbreak (int fd, int len);

termios auxiliary functions
In addition to the termios functions in the previous section, a number of library functions
manipulate termios struct entries. With one exception, they handle line speeds. They don’t
have any direct effect on the line—you need a tcsetattr for that—but they provide a link
between the viewpoint of the application and the underlying implementation.

There is still no agreement on how to represent line speeds. BSD systems use the bit rate as
an integer and store it in the fields c_ispeed and c_ospeed. They leave it to the driver to
explain it to the hardware, so you can effectively specify any speed the hardware is capable of
handling. By contrast, System V still uses the small numeric indices that were used in the

5 February 2005 02:09

268

Seventh Edition* (see page 240), which allows the field to be stored in 4 bits. They are
located in the field c_cflag. This is not a good idea, because these speeds are the only ones
System V knows about. If you have a V.32bis, V.42bis modem that claims to be able to trans-
fer data at up to 57,600 bps, you will not be able to take full advantage of its capabilities with
System V. In addition, there is only one speed constant, which sets both the input and output
speeds. The functions for setting input and output speed are effectively the same thing.

In addition to these problems, SCO UNIX System V.3 further complicates the issue by provid-
ing the fields s_ospeed and s_ispeed in the struct termios. The functions
cfsetispeed and cfsetospeed set these fields in addition to the four bits in c_cflag, but
the functions cfgetispeed and cfgetospeed retrieve the values from c_cflags, so it’s not
clear what use the fields c_ispeed and c_ospeed are intended to be.

Setting the bit rates is thus not quite as simple as it might appear: the preprocessor variables
B9600 and friends might not equate to the kind of constant that the termios implementation
needs, and there is no designated place in the termios structure to store the bit rates.

This problem is solved by the following functions, which are normally macros:

• speed_t cfgetispeed (struct termios *t) returns t’s input speed in speed_t
format. It is undefined if the speed is not representable as speed_t.

• int cfsetispeed (struct termios *t, speed_t speed)sets t’s input speed to
the internal representation of speed.

• speed_t cfgetospeed (struct termios *t) returns t’s output speed in speed_t
format. The result is undefined if the speed is not representable as speed_t.

• int cfsetospeed (struct termios *t, speed_t speed) sets t’s output speed
to the internal representation of speed.

• void cfsetspeed (struct termios *t, speed_t speed) sets both input and
output speed to the internal representation of speed.

• void cfmakeraw (struct termios *t) sets the whole structure t to default values.

* These constants were originally the values that were written to the interface hardware to set the speed.

5 February 2005 02:09

