
8
Testing the results

Finally make has run through to the end and has not reported errors. Your source tree now
contains all the objects and executables. You’re done!

After a brief moment of euphoria, you sit down at the keyboard and start the program:

$ xterm
Segmentation fault - core dumped

Well, maybe you’re not quite done after all. Occasionally the program does not work as
advertised. What you do now depends on how much programming experience you have. If
you are a complete beginner, you could be in trouble—about the only thing you can do (apart
from asking somebody else) is to go back and check that you really did configure the package
correctly.

On the other hand, if you have even a slight understanding of programming, you should try to
analyze the cause of the error—it’s easier than you think. Hold on, and try not to look down.

There are thousands of possible reasons for the problems you encounter when you try to run a
buggy executable, and lots of good books explain debugging techniques. In this chapter, we
will touch only on aspects of debugging that relate to porting. First we’ll attack a typical, if
somewhat involved, real-life bug, and solve it, discussing the pros and cons on the way. Then
we’ll look at alternatives to traditional debuggers: kernel and network tracing.

Before you even start your program, of course, you should check if any test programs are
available. Some packages include their own tests, and separate test suites are available for
others. For other packages there may be test suites that were not designed for the package,
but that can be used with it. If there are any tests, you should obviously run them. You might
also consider writing some tests and including them as a target test in the Makefile.

What makes ported programs fail?
Ported programs don’t normally fail for the same reasons as programs under development. A
program under development still has bugs that prevent it from running correctly on any plat-
form, while a ported program has already run reasonably well on some other platform. If it
doesn’t run on your platform, the reasons are usually:

105

5 February 2005 02:09

106

• A latent bug has found more fertile feeding ground. For example, a program may read
from a null pointer. This frequently doesn’t get noticed if the data at address 0 doesn’t
cause the program to do anything unusual. On the other hand, if the new platform does
not have any memory mapped at address 0, it will cause a segmentation violation or a
bus error.

• Differences in the implementation of library functions or kernel functionality cause the
program to behave differently in the new environment. For example, the function setp-
grp has completely different semantics under System V and under BSD. See Chapter
12, Kernel dependencies, page 171, for more details.

• The configuration scripts have nev er been adequately tested for your platform. As a
result, the program contains bugs that were not in the original versions.

A strategy for testing
When you write your own program with its own bugs, it helps to understand exactly what the
program is trying to do: if you sit back and think about it, you can usually shorten the debug-
ging process. When debugging software that you have just ported, the situation is different:
you don’t understand the package, and learning its internals could take months. You need to
find a way to track down the bug without getting bogged down with the specifics of how the
package works.

You can overdo this approach, of course. It still helps to know what the program is trying to
do. For example, when xterm dies, it’s nice to know roughly how xterm works: it opens a
window on an X server and emulates a terminal in this window. If you know something about
the internals of X11, this will also be of use to you. But it’s not time-effective to try to fight
your way through the source code of xterm.

In the rest of this chapter, we’ll use this bug (yes, it was a real live bug in X11R6) to look at
various techniques that you can use to localize and finally pinpoint the problem. The princi-
ple we use is the old GIGO principle — garbage in, garbage out. We’ll subdivide the program
into pieces which we can conveniently observe, and check which of them does not produce
the expected output. After we find the piece with the error, we subdivide it further and repeat
the process until we find the bug. The emphasis in this method is on convenient: it doesn’t
necessarily have to make sense. As long as you can continue to divide your problem area into
between two and five parts and localize the problem in one of the parts, it won’t take long to
find the bug.

So what’s a convenient way to look at the problems? That depends on the tools you have at
your disposal:

• If you have a symbolic debugger, you can divide your problem into the individual func-
tions and examine what goes in and what goes out.

• If you have a system call trace program, such as ktrace or truss, you can monitor what
the program says to the system and what the system replies.

5 February 2005 02:09

Chapter 8: Testing 107

• If you have a communications line trace program, you can try to divide your program
into pieces that communicate across this line, so you can see what they are saying to each
other.

Of course, we have all these things. In the following sections we’ll look at each of them in
more detail.

Symbolic debuggers
If you don’t hav e a symbolic debugger, get one. Now. Many people still claim to be able to
get by without a debugger, and it’s horrifying how many people don’t even know how to use
one. Of course you can debug just about anything without a symbolic debugger. Historians
tell us that you can build pyramids without wheels—that’s a comparable level of technology
to testing without a debugger. The GNU debugger, gdb, is available on just about every plat-
form you’re likely to encounter, and though it’s not perfect, it runs rings around techniques
like putting printf statements in your programs.

In UNIX, a debugger is a process that takes control of the execution of another process. Most
versions of UNIX allow only one way for the debugger to take control: it must start the
process that it debugs. Some versions, notably SunOS 4, but not Solaris 2, also allow the
debugger to attach to a running process.

Whichever debugger you use, there are a surprisingly small number of commands that you
need. In the following discussion, we’ll look at the command set of gdb, since it is widely
used. The commands for other symbolic debuggers vary considerably, but they normally have
similar purposes.

• A stack trace command answers the question, “Where am I, and how did I get here?”,
and is almost the most useful of all commands. It’s certainly the first thing you should
do when examining a core dump or after getting a signal while debugging the program.
gdb implements this function with the backtrace command.

• Displaying data is the most obvious requirement: what is the current value of the vari-
able bar? In gdb, you do this with the print command.

• Displaying register contents is really the same thing as displaying program data. In gdb,
you display individual registers with the print command, or all registers with the info
registers command.

• Modifying data and register contents is an obvious way of modifying program execution.
In gdb, you do this with the set command.

• breakpoints stop execution of the process when the process attempts to execute an
instruction at a certain address. gdb sets breakpoints with the break command.

• Many modern machines have hardware support for more sophisticated breakpoint mech-
anisms. For example, the i386 architecture can support four hardware breakpoints on
instruction fetch (in other words, traditional breakpoints), memory read or memory write.
These features are invaluable in systems that support them; unfortunately, UNIX usually

5 February 2005 02:09

108

does not. gdb simulates this kind of breakpoint with a so-called watchpoint. When
watchpoints are set, gdb simulates program execution by single-stepping through the pro-
gram. When the condition (for example, writing to the global variable foo) is fulfilled,
the debugger stops the program. This slows down the execution speed by several orders
of magnitude, whereas a real hardware breakpoint has no impact on the execution speed.*

• Jumping (changing the address from which the next instruction will be read) is really a
special case of modifying register contents, in this case the program counter (the register
that contains the address of the next instruction). This register is also sometimes called
the instruction pointer, which makes more sense. In gdb, use the jump command to do
this. Use this instruction with care: if the compiler expects the stack to look different at
the source and at the destination, this can easily cause incorrect execution.

• Single stepping in its original form is supported in hardware by many architectures: after
executing a single instruction, the machine automatically generates a hardware interrupt
that ultimately causes a SIGTRAP signal to the debugger. gdb performs this function with
the stepi command.

• You won’t want to execute individual machine instructions until you are in deep trouble.
Instead, you will execute a single line instruction, which effectively single steps until you
leave the current line of source code. To add to the confusion, this is also frequently
called single stepping. This command comes in two flavours, depending on how it treats
function calls. One form will execute the function and stop the program at the next line
after the call. The other, more thorough form will stop execution at the first executable
line of the function. It’s important to notice the difference between these two functions:
both are extremely useful, but for different things. gdb performs single line execution
omitting calls with the next command, and includes calls with the step command.

There are two possible approaches when using a debugger. The easier one is to wait until
something goes wrong, then find out where it happened. This is appropriate when the process
gets a signal and does not overwrite the stack: the backtrace command will show you how it
got there.

Sometimes this method doesn’t work well: the process may end up in no-man’s-land, and you
see something like:

Program received signal SIGSEGV, Segmentation fault.
0x0 in ?? ()
(gdb) bt abbreviation for backtrace
#0 0x0 in ?? () nowhere
(gdb)

Before dying, the process has mutilated itself beyond recognition. Clearly, the first approach
won’t work here. In this case, we can start by conceptually dividing the program into a num-
ber of parts: initially we take the function main and the set of functions which main calls. By
single stepping over the function calls until something blows up, we can localize the function
in which the problem occurs. Then we can restart the program and single step through this

* Some architectures slow the overall execution speed slightly in order to test the hardware registers.
This effect is negligible.

5 February 2005 02:09

Chapter 8: Testing 109

function until we find what it calls before dying. This iterative approach sounds slow and tir-
ing, but in fact it works surprisingly well.

Libraries and debugging information
Let’s come back to our xterm program and use gdb to figure out what is going on. We could,
of course, look at the core dump, but in this case we can repeat the problem at will, so we’re
better off looking at the live program. We enter:

$ gdb xterm
(political statement for the FSF omitted)
(gdb) r -display allegro:0 run the program
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm -display allegro:0

Program received signal SIGBUS, Bus error.
0x3b0bc in _XtMemmove ()
(gdb) bt look back down the stack
#0 0x3b0bc in _XtMemmove () all these functions come from the X toolkit
#1 0x34dcd in XtScreenDatabase ()
#2 0x35107 in _XtPreparseCommandLine ()
#3 0x4e2ef in XtOpenDisplay ()
#4 0x4e4a1 in _XtAppInit ()
#5 0x35700 in XtOpenApplication ()
#6 0x357b5 in XtAppInitialize ()
#7 0x535 in main ()
(gdb)

The stack trace shows that the main program called XtAppInitialize, and the rest of the
stack shows the program deep in the X Toolkit, one of the central X11 libraries. If this were a
program that you had just written, you could expect it to be a bug in your program. In this
case, where we have just built the complete X11 core system, there’s also every possibility
that it is a library bug. As usual, the library was compiled without debug information, and
without that you hardly have a hope of finding it.

Apart from size constraints, there is no reason why you can’t include debugging information
in a library. The object files in libraries are just the same as any others — we discuss them in
detail on page 369. If you want, you can build libraries with debugging information, or you
can take individual library routines and compile them separately.

Unfortunately, the size constraints are significant: without debugging information, the file
libXt.a is about 330 kB long and contains 53 object files. With debugging information, it
might easily reach 20 MB, since all the myriad X11 global symbols would be included with
each object file in the archive. It’s not just a question of disk space: you also need virtual
memory during the link phase to accommodate all these symbols. Most of these files don’t
interest us anyway: the first one that does is the one that contains _XtMemmove. So we find
where it is and compile it alone with debugging information.

That’s not as simple as it sounds: first we need to find the source file, and to do that we need
to find the source directory. We could read the documentation, but to do that we need to know
that the Xt functions are in fact the X toolkit. If we’re using GNU make, or if our Makefile

5 February 2005 02:09

110

documents directory changes, an alternative would be to go back to our make log and look for
the text Xt. If we do this, we quickly find

make[4]: Leaving directory ‘/X/X11R6/xc/lib/Xext’
making Makefiles in lib/Xt...

mv Makefile Makefile.bak
make[4]: Entering directory ‘/X/X11R6/xc/lib/Xt’
make[4]: Nothing to be done for ‘Makefiles’.
make[4]: Leaving directory ‘/X/X11R6/xc/lib/Xt’

So the directory is /X/X11R6/xc/lib/Xt. The next step is to find the file that contains XtMem-
move. There is a possibility that it is called XtMemmove.c, but in this case there is no such
file. We’ll have to grep for it. Some versions of grep have an option to descend recursively
into subdirectories, which can be very useful if you have one available. Another useful tool is
cscope, which is supplied with System V.

$ grep XtMemmove *.c
Alloc.c:void _XtMemmove(dst, src, length)
Convert.c: XtMemmove(&p->from.addr, from->addr, from->size);
... many more references to XtMemmove

So XtMemmove is in Alloc.c. By the same method, we look for the other functions mentioned
in the stack trace and discover that we also need to recompile Initialize.c and Display.c.

In order to compile debugging information, we add the compiler option -g. At the same time,
we remove -O. gcc doesn’t require this, but it’s usually easier to debug a non-optimized pro-
gram. We hav e three choices of how to set the options:

• We can modify the Makefile (make World, the main make target for X11, rebuilds the
Makefiles from the corresponding Imakefiles, so this is not overly dangerous).

• If we hav e a working version of xterm, we can use its facilities: first we start the compila-
tion with make, but we don’t need to wait for the compilation to complete: as soon as the
compiler invocation appears on the screen, we abort the build with CTRL-C. Using the
xterm copy function, we copy the compiler invocation to the command line and add the
options we want:

$ rm Alloc.o Initialize.o Display.o remove the old objects
$ make and start make normally
rm -f Alloc.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -I../.. \
-DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Alloc.c
ˆC interrupt make with CTRL-C
make: *** [Alloc.o] Interrupt
copy the invocation lines above with the mouse, and paste below, then
modify as shown in bold print
$ gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -I../.. \
-DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Alloc.c -g

You can also use make -n, which just shows the commands that make would execute,
rather than aborting the make, but you frequently find that make -n prints out a whole
lot of stuff you don’t expect. When you have made Alloc.o, you can repeat the process

5 February 2005 02:09

Chapter 8: Testing 111

for the other two object files.

• We could change CFLAGS from the make command line. Our first attempt doesn’t work
too well, though. If you compare the following line with the invocation above, you’ll see
that a whole lot of options are missing. They were all in CFLAGS; by redefining CFLAGS,
we lose them all:

$ make CFLAGS=-g
rm -f Alloc.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g Alloc.c

CFLAGS included all the compiler options starting from -I/../.., so we need to write:

$ make CFLAGS=’-g -c -I../.. -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL’

When we have created all three new object files, we can let make complete the library for us.
It will not try to remake these object files, since now they are newer than any of their depen-
dencies:

$ make run make to build a new library
rm -f libXt.a
ar clq libXt.a ActionHook.o Alloc.o ArgList.o Callback.o ClickTime.o Composite.o \
Constraint.o Convert.o Converters.o Core.o Create.o Destroy.o Display.o Error.o \
Event.o EventUtil.o Functions.o GCManager.o Geometry.o GetActKey.o GetResList.o \
GetValues.o HookObj.o Hooks.o Initialize.o Intrinsic.o Keyboard.o Manage.o \
NextEvent.o Object.o PassivGrab.o Pointer.o Popup.o PopupCB.o RectObj.o \
Resources.o Selection.o SetSens.o SetValues.o SetWMCW.o Shell.o StringDefs.o \
Threads.o TMaction.o TMgrab.o TMkey.o TMparse.o TMprint.o TMstate.o VarCreate.o \
VarGet.o Varargs.o Vendor.o
ranlib libXt.a
rm -f ../../usrlib/libXt.a
cd ../../usrlib; ln ../lib/Xt/libXt.a .
$

Now we hav e a copy of the X Toolkit in which these three files have been compiled with sym-
bols. Next, we need to rebuild xterm. That’s straightforward enough:

$ cd ../../programs/xterm/
$ pwd
/X/X11R6/xc/programs/xterm
$ make
rm -f xterm
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -fwritable-strings -o xterm \
-L../../usrlib main.o input.o charproc.o cursor.o util.o tabs.o screen.o \
scrollbar.o button.o Tekproc.o misc.o VTPrsTbl.o TekPrsTbl.o data.o menu.o -lXaw \
-lXmu -lXt -lSM -lICE -lXext -lX11 -L/usr/X11R6/lib -lpt -ltermlib

Finally, we try again. Since the library is not in the current directory, we use the dir com-
mand to tell gdb where to find the sources. Now we get:

$ gdb xterm
(gdb) dir ../../lib/X11 set source paths
Source directories searched:
/X/X11/X11R6/xc/programs/xterm/../../lib/X11:$cdir:$cwd
(gdb) dir ../../lib/Xt

5 February 2005 02:09

112

Source directories searched:
/X/X11/X11R6/xc/programs/xterm/../../lib/Xt/X/X11/X11R6/xc/programs/xterm/../..\
/lib/X11:$cdir:$cwd
(gdb) r and run the program
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Program received signal SIGBUS, Bus error.
0x3ced6 in _XtMemmove (dst=0x342d8 "ÐE 03", src=0x41c800 "", length=383) \
at Alloc.c:101
101 *dst++ = *src++;
(gdb)

This shows a typical byte for byte memory move. About the only thing that could cause a bus
error on that statement would be an invalid address, but the parameters show that they appear
to be valid.

There are at two possible gotchas here:

• The debugger may be lying. The parameters it shows are the parameters on the stack. If
the code has been optimized, there is a very good chance that the source and destination
addresses are stored in registers, and thus the value of dst on the stack is not up to date.

• The destination address may be in the text segment, in which case an attempt to write to
it will cause some kind of error. Depending on the system it could be a segmentation
violation or a bus error.

The most reliable way to find out what is really going on is to look at the machine instructions
being executed. First we tell the debugger to look at current instruction and the following five
instructions:

(gdb) x/6i $eip list the next 6 instructions
0x3ced6 <_XtMemmove+74>: movb %al,(%edx)
0x3ced8 <_XtMemmove+76>: incl 0xc(%ebp)
0x3cedb <_XtMemmove+79>: incl 0x8(%ebp)
0x3cede <_XtMemmove+82>: jmp 0x3cec2 <_XtMemmove+54>
0x3cee0 <_XtMemmove+84>: leave
0x3cee1 <_XtMemmove+85>: ret

The first instruction is a byte move, from register al to the address stored in register edx.
Let’s look at the address in edx:

(gdb) p/x $edx
$9 = 0x342d8

Well, this is our dst address alright—why can’t it store there? It would be nice to be able to
try to set values in memory and see if the debugger can do it:

(gdb) set *dst = ’X’b
(gdb) p *dst
$13 = 88 ’X’

That looks writable enough. Unfortunately, you can’t rely on the debugger to tell the truth.
Debuggers must be able to write to the text segment. If the write had failed, you could have
been sure that the address was not writable, but if the write succeeds, you can’t be sure. What

5 February 2005 02:09

Chapter 8: Testing 113

we need to know are the exact segment limits. Some debuggers show you the segment limits,
but current versions of gdb do not. An alternative is the size command:

$ size xterm
text data bss dec hex filename
846204 56680 23844 926728 e2408 xterm

The text segment is 846204 decimal bytes long (0xce97c), and on this system (SCO UNIX) it
starts at address 0, so the address is, indeed, in the text segment. But where did it come from?
To find an answer to that question, we need to look at the calling function. In gdb, we do this
with the frame command:

(gdb) f 1 look at the calling function (frame 1)
#1 0x35129 in _MergeOptionTables (src1=0x342d8, num_src1=24,

src2=0x400ffe, num_src2=64, dst=0x7ffff9c0, num_dst=0x7ffff9bc)
at Initialize.c:602

602 (void) memmove(table, src1, sizeof(XrmOptionDescRec) * num_src1);

That’s funny—last time it died, the function was called from XtScreenDatabase,* not from
_MergeOptionTables. Why? At the moment it’s difficult to say for sure, but it’s possible
that this difference happened because we removed optimization. In any case, we still have a
problem, so we should fix this one first and then go back and look for the other one if solving
this problem isn’t enough.

In this case, the frame command doesn’t help much, but it does tell us that the destination
variable is called table, and implicitly that memmove has been defined as _XtMemmove in this
source file. We could now look at the source file in an editor in a different X window, but it’s
easier to list the instructions around the current line with the list command:

(gdb) l
597 enum {Check, NotSorted, IsSorted} sort_order = Check;
598
599 *dst = table = (XrmOptionDescRec*)
600 XtMalloc(sizeof(XrmOptionDescRec) * (num_src1 + num_src2));
601
602 (void) memmove(table, src1, sizeof(XrmOptionDescRec) * num_src1);
603 if (num_src2 == 0) {
604 *num_dst = num_src1;
605 return;
606 }

So, the address is returned by the function XtMalloc—it seems to be allocating storage in the
text segment. At this point, we could examine it more carefully, but let’s first be sure that
we’re looking at the right problem. The address in table should be the same as the address
in the parameter dst of XtMemmove. We’re currently examining the environment of _Mer-
geOptionTables, so we can look at it directly:

(gdb) p table
$29 = (XrmOptionDescRec *) 0x41c800

That looks just fine. Where did this strange dst address come from? Let’s set a breakpoint

* See frame 1 in the stack trace on page 109.

5 February 2005 02:09

114

on the call to memmove on line 602, and then restart the program:

Example 8−1:

(gdb) b 602
Breakpoint 8 at 0x35111: file Initialize.c, line 602.
(gdb) r
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /X/X11/X11R6/xc/programs/xterm/xterm

Breakpoint 8, _MergeOptionTables (src1=0x342d8, num_src1=24,
src2=0x400ffe, num_src2=64, dst=0x7ffff9c0, num_dst=0x7ffff9bc)
at Initialize.c:602

602 (void) memmove(table, src1, sizeof(XrmOptionDe
(gdb) p table look again, to be sure
$31 = (XrmOptionDescRec *) 0x41c800
(gdb) s single step into memmove
_XtMemmove (dst=0x342d8 "ÐE 03", src=0x41c800 "", length=384)

at Alloc.c:94
94 if (src < dst) {

This is really strange! table has a valid address in the data segment, but the address we pass
to _XtMemmove is in the text segment and seems unrelated. It’s not clear what we should look
at next:

• The source of the function calls memmove, but after preprocessing it ends up calling
_XtMemmove. memmove might simply be defined as _XtMemmove, but it might also be
defined with parameters, in which case some subtle type conversions might result in our
problem.

• If you understand the assembler of the system, it might be instructive to look at the actual
instructions that the compiler produces.

It’s definitely quicker to look at the assembler instructions than to fight your way through the
thick undergrowth in the X11 source tree:

(gdb) x/8i $eip look at the next 8 instructions
0x35111 <_MergeOptionTables+63>: movl 0xc(%ebp),%edx
0x35114 <_MergeOptionTables+66>: movl %edx,0xffffffd8(%ebp)
0x35117 <_MergeOptionTables+69>: movl 0xffffffd8(%ebp),%edx
0x3511a <_MergeOptionTables+72>: shll $0x4,%edx
0x3511d <_MergeOptionTables+75>: pushl %edx
0x3511e <_MergeOptionTables+76>: pushl 0xfffffffc(%ebp)
0x35121 <_MergeOptionTables+79>: pushl 0x8(%ebp)
0x35124 <_MergeOptionTables+82>: call 0x3ce8c <_XtMemmove>

This isn’t easy stuff to handle, but it’s worth understanding, so we’ll pull it apart, instruction
for instruction. It’s easier to understand this discussion if you refer to the diagrams of stack
structure in Chapter 21, Object files and friends, page 377.

• movl 0xc(%ebp),%edx takes the content of the stack word offset 12 in the current stack
frame and places it in register edx. As we hav e seen, this is num_src1, the second

5 February 2005 02:09

Chapter 8: Testing 115

parameter passed to _MergeOptionTables.

• movl %edx,0xffffffd8(%ebp) stores the value of edx at offset -40 in the current
stack frame. This is for temporary storage.

• movl 0xffffffd8(%ebp),%edx does exactly the opposite: it loads register edx from
the location where it just stored it. These two instructions are completely redundant.
They are also a sure sign that the function was compiled without optimization.

• shll $0x4,%edx shifts the contents of register edx left by 4 bits, multiplying it by 16.
If we compare this to the source, it’s evident that the value of XrmOptionDescRec is 16,
and that the compiler has taken a short cut to evaluate the third parameter of the call.

• pushl %edx pushes the contents of edx onto the stack.

• pushl 0xfffffffc(%ebp) pushes the value of the word at offset -4 in the current stack
frame onto the stack. This is the value of table, as we can confirm by looking at the
instructions generated for the previous line.

• pushl 0x8(%ebp) pushes the value of the first parameter, src1, onto the stack.

• Finally, call _XtMemmove calls the function. Expressed in C, we now know that it
calls

memmove (src1, table, num_src1 << 4);

This is, of course, wrong: the parameter sequence of source and destination has been reversed.
Let’s look at _XtMemmove more carefully:

(gdb) l _XtMemmove
89 #ifdef _XNEEDBCOPYFUNC
90 void _XtMemmove(dst, src, length)
91 char *dst, *src;
92 int length;
93 {
94 if (src < dst) {
95 dst += length;
96 src += length;
97 while (length--)
98 *--dst = *--src;
99 } else {
100 while (length--)
101 *dst++ = *src++;
102 }
103 }
104 #endif

Clearly the function parameters are the same as those of memmove, but the calling sequence
has reversed them. We’v e found the problem, but we haven’t found what’s causing it.

Aside: Debugging is not an exact science. We’v e found our problem, though we still don’t
know what’s causing it. But looking back at Example 8-1, we see that the address for src on
entering _XtMemmove was the same as the address of table. That tells us as much as analyz-
ing the machine code did. This will happen again and again: after you find a problem, you

5 February 2005 02:09

116

discover you did it the hard way.

The next thing we need to figure out is why the compiler reversed the sequence of the parame-
ters. Can this be a compiler bug? Theoretically, yes, but it’s very unlikely that such a primi-
tive bug should go undiscovered up to now.

Remember that the compiler does not compile the sources you see: it compiles whatever the
preprocessor hands to it. It makes a lot of sense to look at the preprocessor output. To do
this, we go back to the library directory. Since we used pushd, this is easy—just enter
pushd. In the library, we use the same trick as before in order to run the compiler with differ-
ent options, only this time we use the options -E (stop after running the preprocessor), -dD
(retain the text of the definitions in the preprocessor output), and -C (retain comments in the
preprocessor output). In addition, we output to a file junk.c:

$ pushd
$ rm Initialize.o
$ make Initialize.o
rm -f Initialize.o
gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g -I../.. \

-D_SVID -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Initialize.c
make: *** [Initialize.o] Interrupt hit CTRL-C
... copy the command into the command line, and extend:
$ gcc -DNO_ASM -fstrength-reduce -fpcc-struct-return -c -g -I../.. \
-D_SVID -DNO_AF_UNIX -DSYSV -DSYSV386 -DUSE_POLL Initialize.c \
-E -dD -C >junk.c

$

As you might have guessed, we now look at the file junk.c with an editor. We’re looking for
memmove, of course. We find a definition in /usr/include/string.h, then later on we find, in
/X/X11/X11R6/xc/X11/Xfuncs.h,

#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))

#define memmove(dst,src,len) _XBCOPYFUNC((char *)(src),(char *)(dst),(int)(len))
#define _XNEEDBCOPYFUNC

For some reason, the configuration files have decided that memmove is not defined on this sys-
tem, and have replaced it with bcopy (which is really not defined on this system). Then they
replace it with the substitute function _XBCOPYFUNC, almost certainly a preprocessor defini-
tion. It also defines the preprocessor variable _XNEEDBCOPYFUNC to indicate that _XtMem-
move should be compiled.

Unfortunately, we don’t see what happens with _XNEEDBCOPYFUNC. The preprocessor dis-
cards all #ifdef lines. It does include #defines, however, so we can look for where
_XBCOPYFUNC is defined—it’s in IntrinsicI.h, as the last #line directive before the definition
indicates.

#define _XBCOPYFUNC _XtMemmove

IntrinsicI.h also contains a number of definitions for XtMemmove, none of which are used in
the current environment, but all of which have the parameter sequence (dst, src, count).
bcopy has the parameter sequence (src, dst, count). Clearly, somebody has confused

5 February 2005 02:09

Chapter 8: Testing 117

something in this header file, and under certain rare circumstances the call is defined with the
incorrect parameter sequence.

Somewhere in here is a lesson to be learnt: this is a real bug that occurred in X11R6, patch
level 3, one of the most reliable and most portable software packages available, yet here we
have a really primitive bug. The real problem lies in the configuration mechanism: automated
configuration can save a lot of time in normal circumstances, but it can also cause lots of pain
if it makes incorrect assumptions. In this case, the environment was unusual: the kernel plat-
form was SCO UNIX, which has an old-fashioned library, but the library was GNU libc. This
caused the assumptions of the configuration mechanism to break down.

Let’s look more carefully at the part of Xfuncs.h where we found the definitions:

/* the new Xfuncs.h */

#if !defined(X_NOT_STDC_ENV) && (!defined(sun) || defined(SVR4))
/* the ANSI C way */
#ifndef _XFUNCS_H_INCLUDED_STRING_H
#include <string.h>
#endif
#undef bzero
#define bzero(b,len) memset(b,0,len)
#else /* else X_NOT_STDC_ENV or SunOS 4 */
#if defined(SYSV) || defined(luna) || defined(sun) || defined(__sxg__)
#include <memory.h>
#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#if defined(SYSV) && defined(_XBCOPYFUNC)
#undef memmove
#define memmove(dst,src,len) _XBCOPYFUNC((char *)(src),(char *)(dst),(int)(len))
#define _XNEEDBCOPYFUNC
#endif
#else /* else vanilla BSD */
#define memmove(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#define memcpy(dst,src,len) bcopy((char *)(src),(char *)(dst),(int)(len))
#define memcmp(b1,b2,len) bcmp((char *)(b1),(char *)(b2),(int)(len))
#endif /* SYSV else */
#endif /* ! X_NOT_STDC_ENV else */

This is hairy (and incorrect) stuff. It makes its decisions based on the variables
X_NOT_STDC_ENV, sun, SVR4, SYSV, luna, __sxg__ and _XBCOPYFUNC. These are the deci-
sions:

• If the variable is not defined, it assumes ANSI C, unless this is a pre-SVR4 Sun machine.

• Otherwise it checks the variables SYSV (for System V.3), luna, sun or __sxg__. If any
of these are set, it includes the file memory.h and defines memmove in terms of bcopy. If
_XBCOPYFUNC is defined, it redefines memmove as _XBCOPYFUNC, rev ersing the parame-
ters as it goes.

• If none of these conditions apply, it assumes a vanilla BSD machine and defines the func-
tions memmove, memcpy and memcmp in terms of the BSD functions bcopy and bcmp.

There are two errors here:

5 February 2005 02:09

118

• The only way that _XBCOPYFUNC is ever defined is as _XtMemmove, which does not have
the same parameter sequence as bcopy—instead, it has the same parameter sequence as
memmove. We can fix this part of the header by changing the definition line to

#define memmove(dst,src,len) _XBCOPYFUNC((char *)(dst),(char *)(src),(int)(len))

or even to

#define memmove _XBCOPYFUNC

• There is no reason to assume that this system does not use ANSI C: it’s using gcc and
GNU libc.a, both of them very much standard compliant. We need to examine this point
in more detail:

Going back to our junk.c, we search for X_NOT_STDC_ENV and find it defined at line 85 of
/X/X11/X11R6/xc/X11/Xosdefs.h:

#ifdef SYSV386
#ifdef SYSV
#define X_NOT_POSIX
#define X_NOT_STDC_ENV
#endif
#endif

In other words, this bug is likely to occur only with System V.3 implementations on Intel
architecture. This is a fairly typical way to make decisions about the system, but it is wrong:
X_NOT_STDC_ENV relates to a compiler, not an operating system, but both SYSV386 and SYSV
define operating system characteristics. At first sight it would seem logical to modify the defi-
nitions like this:

#ifdef SYSV386
#ifdef SYSV
#ifndef __GNU_LIBRARY__
#define X_NOT_POSIX
#endif
#ifndef __GNUC__
#define X_NOT_STDC_ENV
#endif
#endif
#endif

This would only define the variables if the library is not GNU libc or the compiler is not gcc.
This is still not correct: the relationship between __GNUC__ and X_NOT_STDC_ENV or
__GNU_LIBRARY__ and X_NOT_POSIX is not related to System V or the Intel architecture.
Instead, it makes more sense to backtrack at the end of the file:

#ifdef __GNU_LIBRARY__
#undef X_NOT_POSIX
#endif
#ifdef __GNUC__
#undef X_NOT_STDC_ENV
#endif

Whichever way we look at it, this is a mess. We’re applying cosmetic patches to a

5 February 2005 02:09

Chapter 8: Testing 119

configuration mechanism which is based in incorrect assumptions. Until some better configu-
ration mechanism comes along, unfortunately, we’re stuck with this situation.

Limitations of debuggers
Debuggers are useful tools, but they hav e their limitations. Here are a couple which could
cause you problems:

Can’t breakpoint beyond fork

UNIX packages frequently start multiple processes to do the work on hand. Frequently
enough, the program that you start does nothing more than to spawn a number of other pro-
cesses and wait for them to stop. Unfortunately, the ptrace interface which debuggers use
requires the process to be started by the debugger. Even in SunOS 4, where you can attach the
debugger to a process that is already running, there is no way to monitor it from the start.
Other systems don’t offer even this facility. In some cases you can determine how the process
was started and start it with the debugger in the same manner. This is not always possi-
ble — for example, many child processes communicate with their parent.

Unfortunately, SunOS trace doesn’t support tracing through fork. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SunOS 4, where there is
no support for trace through fork), you might find it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won’t show up under Solaris 2.

Terminal logs out

The debugger usually shares a terminal with the program being tested. If the program
changes the driver configuration, the debugger should change it back again when it gains con-
trol (for example, on hitting a breakpoint), and set it back to the way the program set it before
continuing. In some cases, however, it can’t: if the process has taken ownership of the termi-
nal with a system call like setsid (see Chapter 12, Kernel dependencies, page 171), it will no
longer have access to the terminal. Under these circumstances, most debuggers crawl into a
corner and die. Then the shell in control of the terminal awakes and dies too. If you’re run-
ning in an xterm, the xterm then stops; if you’re running on a glass tty, you will be logged out.

The best way out of this dilemma is to start the child process on a different terminal, if your
debugger and your hardware configuration support it. To do this with an xterm requires start-
ing a program which just sleeps, so that the window stays open until you can start your test
program:

$ xterm -e sleep 100000&
[1] 27013
$ ps aux|grep sleep
grog 27025 3.0 0.0 264 132 p6 S+ 1:13PM 0:00.03 grep sleep
root 27013 0.0 0.0 1144 740 p6 I 1:12PM 0:00.37 xterm -e sleep 100000
grog 27014 0.0 0.0 100 36 p8 Is+ 1:12PM 0:00.06 sleep 100000
$ gdb myprog
(gdb) r < /dev/ttyp8 > /dev/ttyp8

5 February 2005 02:09

120

This example was done on a BSD machine. On a System V machine you will need to use ps
-ef instead of ps aux. First, you start an xterm with sleep as controlling shell (so that it will
stay there). With ps you grep for the controlling terminal of the sleep process (the third line in
the example), and then you start your program with stdin and stdout redirected to this termi-
nal.

Can’t interrupt process

The ptrace interface uses the signal SIGTRAP to communicate with the process being
debugged. What happens if you block this signal, or ignore it? Nothing — the debugger
doesn’t work any more. It’s bad practice to block SIGTRAP, of course, but it can be done.
More frequently, though, you’ll encounter this problem when a process gets stuck in a signal
processing loop and doesn’t get round to processing the SIGTRAP—precisely one of the times
when you would want to interrupt it. My favourite one is the program which had a SIGSEGV
handler which went and retried the instruction. Unfortunately, the only signal to which a
process in this state will still respond is SIGKILL, which doesn’t help you much in finding out
what’s going on.

Tracing system calls
An alternative approach is to divide the program between system code and user code. Most
systems have the ability to trace the parameters supplied to each system call and the results
that they return. This is not nearly as good as using a debugger, but it works with all object
files, even if they don’t hav e symbols, and it can be very useful when you’re trying to figure
out why a program doesn’t open a specific file.

Tracing is a very system-dependent function, and there are a number of different programs to
perform the trace: truss runs on System V.4, ktrace runs on BSD NET/2 and 4.4BSD derived
systems, and trace runs on SunOS 4. They vary significantly in their features. We’ll look
briefly at each. Other systems supply still other programs—for example, SGI’s IRIX operat-
ing system supplies the program par, which offers similar functionality.

trace
trace is a relatively primitive tool supplied with SunOS 4 systems. It can either start a process
or attach to an existing process, and it can print summary information or a detailed trace. In
particular, it cannot trace the child of a fork call, which is a great disadvantage. Here’s an
example of trace output with a possibly recognizable program:

$ trace hello
open ("/usr/lib/ld.so", 0, 040250) = 3
read (3, "".., 32) = 32
mmap (0, 40960, 0x5, 0x80000002, 3, 0) = 0xf77e0000
mmap (0xf77e8000, 8192, 0x7, 0x80000012, 3, 32768) = 0xf77e8000
open ("/dev/zero", 0, 07) = 4
getrlimit (3, 0xf7fff488) = 0
mmap (0xf7800000, 8192, 0x3, 0x80000012, 4, 0) = 0xf7800000

5 February 2005 02:09

Chapter 8: Testing 121

close (3) = 0
getuid () = 1004
getgid () = 1000
open ("/etc/ld.so.cache", 0, 05000100021) = 3
fstat (3, 0xf7fff328) = 0
mmap (0, 4096, 0x1, 0x80000001, 3, 0) = 0xf77c0000
close (3) = 0
open ("/opt/lib/gcc-lib/sparc-sun-sunos".., 0, 01010525) = 3
fstat (3, 0xf7fff328) = 0
getdents (3, 0xf7800108, 4096) = 212
getdents (3, 0xf7800108, 4096) = 0
close (3) = 0
open ("/opt/lib", 0, 056) = 3
getdents (3, 0xf7800108, 4096) = 264
getdents (3, 0xf7800108, 4096) = 0
close (3) = 0
open ("/usr/lib/libc.so.1.9", 0, 023170) = 3
read (3, "".., 32) = 32
mmap (0, 458764, 0x5, 0x80000002, 3, 0) = 0xf7730000
mmap (0xf779c000, 16384, 0x7, 0x80000012, 3, 442368) = 0xf779c000
close (3) = 0
open ("/usr/lib/libdl.so.1.0", 0, 023210) = 3
read (3, "".., 32) = 32
mmap (0, 16396, 0x5, 0x80000002, 3, 0) = 0xf7710000
mmap (0xf7712000, 8192, 0x7, 0x80000012, 3, 8192) = 0xf7712000
close (3) = 0
close (4) = 0
getpagesize () = 4096
brk (0x60d8) = 0
brk (0x70d8) = 0
ioctl (1, 0x40125401, 0xf7ffea8c) = 0
write (1, "Hello, World!0, 14) = Hello, World!
14
close (0) = 0
close (1) = 0
close (2) = 0
exit (1) = ?

What’s all this output? All we did was a simple write, but we have performed a total of 43
system calls. This shows in some detail how much the viewpoint of the world differs when
you’re on the other side of the system library. This program, which was run on a SparcStation
2 with SunOS 4.1.3, first sets up the shared libraries (the sequences of open, read, mmap, and
close), then initializes the stdio library (the calls to getpagesize, brk, ioctl, and
fstat), and finally writes to stdout and exits. It also looks strange that it closed stdin before
writing the output text: again, this is a matter of perspective. The stdio routines buffer the
text, and it didn’t actually get written until the process exited, just before closing stdout.

5 February 2005 02:09

122

ktrace
ktrace is supplied with newer BSD systems. Unlike the other trace programs, it writes unfor-
matted data to a log file (by default, ktrace.out), and you need to run another program, kdump,
to display the log file. It has the following options:

• It can trace the descendents of the process it is tracing. This is particularly useful when
the bug occurs in large complexes of processes, and you don’t even know which process
is causing the problem.

• It can attach to processes that are already running. Optionally, it can also attach to exist-
ing children of the processes to which it attaches.

• It can specify broad subsets of system calls to trace: system calls, namei translations
(translation of file name to inode number), I/O, and signal processing.

Here’s an example of ktrace running against the same program:

$ ktrace hello
Hello, World!
$ kdump
20748 ktrace RET ktrace 0
20748 ktrace CALL getpagesize
20748 ktrace RET getpagesize 4096/0x1000
20748 ktrace CALL break(0xadfc)
20748 ktrace RET break 0
20748 ktrace CALL break(0xaffc)
20748 ktrace RET break 0
20748 ktrace CALL break(0xbffc)
20748 ktrace RET break 0
20748 ktrace CALL execve(0xefbfd148,0xefbfd5a8,0xefbfd5b0)
20748 ktrace NAMI "./hello"
20748 hello RET execve 0
20748 hello CALL fstat(0x1,0xefbfd2a4)
20748 hello RET fstat 0
20748 hello CALL getpagesize
20748 hello RET getpagesize 4096/0x1000
20748 hello CALL break(0x7de4)
20748 hello RET break 0
20748 hello CALL break(0x7ffc)
20748 hello RET break 0
20748 hello CALL break(0xaffc)
20748 hello RET break 0
20748 hello CALL ioctl(0x1,TIOCGETA,0xefbfd2e0)
20748 hello RET ioctl 0
20748 hello CALL write(0x1,0x8000,0xe)
20748 hello GIO fd 1 wrote 14 bytes

"Hello, World!
"

20748 hello RET write 14/0xe
20748 hello CALL exit(0xe)

This display contains the following information in columnar format:

5 February 2005 02:09

Chapter 8: Testing 123

1. The process ID of the process.

2. The name of the program from which the process was started. We can see that the name
changes after the call to execve.

3. The kind of event. CALL is a system call, RET is a return value from a system call, NAMI
is a system internal call to the function namei, which determines the inode number for a
pathname, and GIO is a system internal I/O call.

4. The parameters to the call.

In this trace, run on an Intel 486 with BSD/OS 1.1, we can see a significant difference from
SunOS: there are no shared libraries. Even though each system call produces two lines of out-
put (the call and the return value), the output is much shorter.

truss
truss, the System V.4 trace facility, offers the most features:

• It can print statistical information instead of a trace.

• It can display the argument and environment strings passed to each call to exec.

• It can trace the descendents of the process it is tracing.

• Like ktrace, it can attach to processes which are already running and optionally attach to
existing children of the processes to which it attaches.

• It can trace specific system calls, signals, and interrupts (called faults in System V termi-
nology). This is a very useful feature: as we saw in the ktrace example above, the C
library may issue a surprising number of system calls.

Here’s an example of truss output:

$ truss -f hello
511: execve("./hello", 0x08047834, 0x0804783C) argc = 1
511: getuid() = 1004 [1004]
511: getuid() = 1004 [1004]
511: getgid() = 1000 [1000]
511: getgid() = 1000 [1000]
511: sysi86(SI86FPHW, 0x80036058, 0x80035424, 0x8000E255) = 0x00000000
511: ioctl(1, TCGETA, 0x08046262) = 0
Hello, World!
511: write(1, " H e l l o , W o r l d".., 14) = 14
511: _exit(14)

truss offers a lot of choice in the amount of detail it can display. For example, you can select
a verbose parameter display of individual system calls. If we’re interested in the parameters
to the ioctl call, we can enter:

$ truss -f -v ioctl hello
...
516: ioctl(1, TCGETA, 0x08046262) = 0

5 February 2005 02:09

124

516: iflag=0004402 oflag=0000005 cflag=0002675 lflag=0000073 line=0
516: cc: 177 003 010 030 004 000 000 000

In this case, truss shows the contents of the termio structure associated with the TCGETA
request — see Chapter 15, Terminal drivers, pages 241 and 258, for the interpretation of this
information.

Tracing through fork
We’v e seen that ktrace and truss can both trace the child of a fork system call. This is
invaluable: as we saw on page 119, debuggers can’t do this.

Unfortunately, SunOS trace doesn’t support tracing through fork. truss does it better than
ktrace. In extreme cases (like debugging a program of this nature on SunOS 4, where there is
no support for trace through fork), you might find it an advantage to port to a different
machine running an operating system such as Solaris 2 in order to be able to test with truss.
Of course, Murphy’s law says that the bug won’t show up under Solaris 2.

Tracing network traffic
Another place where we can trace is at the network interface. Many processes communicate
across the network, and if we have tools to look at this communication, they may help us iso-
late the part of the package that is causing the problem.

Tw o programs trace message flow across a network:

• On BSD systems, tcpdump and the Berkeley Packet Filter provide a flexible means of
tracing traffic across Internet domain sockets. See Appendix E, Where to get sources, for
availability.

• trpt will print a trace from a socket marked for debugging. This function is available on
System V.4 as well, though it is not clear what use it is under these circumstances, since
System V.4 emulates sockets in a library module. On BSD systems, it comes in a poor
second to tcpdump.

Tracing net traffic is an unusual approach, and we won’t consider it here, but in certain cir-
cumstances it is an invaluable tool. You can find all you need to know about tcpdump in
TCP/IP Illustrated, Volume 1, by Richard Stevens.

5 February 2005 02:09

