
2
Unpacking the goodies

Before you can start porting, you need to put the sources on disk. We use the term source tree
to refer to the directory or hierarchy of directories in which the package is stored. Unpacking
the archives may not be as trivial as it seems: software packages are supplied in many differ-
ent formats, and it is not always easy to recognize the format. In this chapter, we’ll look at
how to extract the sources to create the source tree. In Chapter 3, Care and feeding of source
trees, we’ll see how the source tree changes in the course of a port, and what you can do to
keep it in good shape.

Getting the sources
The standard way to get software sources is on some form of storage medium, such as CD-
ROM or tape. Many packages are also available online via the Internet. The choice is not as
simple as it seems:

Software from the Internet
If you have an Internet connection, and if the software is available on the net, it’s tempting to
just copy it across the net with ftp. This may not be the best choice, however. Some packages
are very big. The compressed sources of the GNU C compiler, for example, occupy about 6
MB. You can’t rely on a typical 56 kb/s line to transfer more than about 2 kilobytes per sec-
ond.* At this speed, it will take nearly an hour to copy the archives. If you’re connected via a
SLIP line, it could take sev eral hours.

Gaining access to the archive sites is not always trivial: many sites have a maximum number
of users. In particular, prep.ai.mit.edu, the prime archive site for gcc, is frequently over-
loaded, and you may need several attempts to get in.

In addition, copying software over the net is not free. It may not cost you money, but some-
body has to pay for it, and once you have the software, you need somewhere to store it, so you
don’t really save on archive media.

* Of course, it should approach 7 kilobytes per second, but network congestion can pull this figure down
to a trickle.

13

5 February 2005 02:09

14

Choice of archive medium
If you do choose to get your software on some other medium, you have the choice between
CD-ROM and tape. Many archive sites will send you tapes if you ask for them. This may
seem like a slow and old-fashioned way to get the software, but the bandwidth is high:* DAT
and Exabyte tapes can store 2 GB per tape, so a single tape could easily contain as much soft-
ware as you can duplicate in a week. In addition, you don’t need to make a backup before
you start.

Software on CD-ROM is not as up-to-date as a freshly copied tape, but it’s easy to store and
reasonably cheap. Many companies make frequent CD editions of the more widely known ar-
chive sites — for example, Walnut Creek CD-ROM has editions of most commonly known
software, frequently pre-ported, and Prime Time Freeware issues a pair of CD-ROMs twice a
year with 5 GB of compressed software including lesser-known packages. This can be worth
it just to be able to find packages that you would otherwise not even hav e known about.

If you have already ported a previous version of the package, another alternative is to use diffs
to bring the archive up to date. We’ll look at this on page 29.

Archives
You frequently get pure source trees on CD-ROM, but other media, and also many CD-ROMs,
transform the source tree several times:

• A source tree is usually supplied in an archive, a file containing a number of other files.
Like a paper bag around groceries, an archive puts a wrapper around the files so that you
can handle them more easily. It does not save any space — in fact, the wrapper makes it
slightly larger than the sum of its files.

• Archives make it easier to handle files, but they don’t do anything to save space. Much
of the information in files is redundant: each byte can have 256 different values, but typi-
cally 99% of an archive of text or program sources will consist of the 96 printable ASCII
characters, and a large proportion of these characters will be blanks. It makes sense to
encode them in a more efficient manner to save space. This is the purpose of compres-
sion programs. Modern compression programs such as gzip reduce the size of an archive
by up to 90%.

• If you want to transfer archives by electronic mail, you may also need to encode them to
comply with the allowable email character set.

• Large archives can become very unwieldy. We hav e already seen that it can take sev eral
hours to transfer gcc. If the line drops in this time, you may find that you have to start
the file again. As a result, archives are frequently split into more manageable chunks.

The most common form of archive you’ll find on the Internet or on CD-ROM is gzipped tar, a
tar archive that has been compressed with gzip. A close second is compressed tar, a tar

* To quote a fortune from the fortune program: Never underestimate the bandwidth of a station wagon
full of tapes..

5 February 2005 02:09

Chapter 2: Unpacking the goodies 15

archive that has been compressed with compress. From time to time, you’ll find a number of
others. In the following sections we’ll take a brief look at the programs that perform these
tasks and recover the data.

Archive programs
A number of archive programs are available:

• tar, the tape archive program, is the all-time favourite. The chances are about 95% that
your archive will be in tar format, even if it has nothing to do with tape.

• cpio is a newer file format that once, years ago, was intended to replace tar. cpio ar-
chives suffer from compatibility problems, however, and you don’t see them very often.

• ar is a disk archive program. It is occasionally used for source archives, though
nowadays it is almost only used for object file archives. The ar archive format has never
been completely standardized, so you get an ar archive from a different machine, you
might have a lot of trouble extracting it. We’ll look at ar formats again in , on page 383.

• shar is the shell archive program. It is unique amongst archive programs in never using
non-printing characters, so shar archives can be sent by mail. You can extract shar ar-
chives simply by feeding them to a (Bourne) shell, though it is safer to use a program
like unshar.

Living with tar
tar is a relatively easy program to use, but the consequences of mistakes can be far-reaching.
In the following sections, we’ll look at how to use tar and how to avoid trouble.

Basic use

When it comes to unpacking software, one or two tar commands can meet all your needs.
First, you often want to look at the contents before unpacking. Assuming that the archive is
named et1.3.tar, the following command lists the files in the archive:

$ tar tf et1.3.tar
et1.3/
et1.3/bell.c
pet1.3/bltgraph.c
et1.3/BLURB

The t option stands for table of contents, and the f option means “use the next parameter in
the command (et1.3.tar) as the name of the archive to list.”

To read in the files that were listed, use the command:

$ tar xfv et1.3.tar
et1.3/
et1.3/bell.c
pet1.3/bltgraph.c
et1.3/BLURB

5 February 2005 02:09

16

The list looks the same, but this time the command actually creates the directory et1.3 if nec-
essary, and then creates the contents. The x option stands for extract, and the f option has the
same meaning as before. The v option means “verbose” and is responsible for generating the
list, which gives you the assurance that the command is actually doing something.

To bundle some files into an archive, use a command like:

$ tar cvf et1.3.tar et1.3

This command packs everything in the et1.3 directory into an archive named et1.3.tar (which
is where we started). The c option stands for “create” and the v option for “verbose.” This
time, the f means “use the next parameter in the command (et1.3.tar) as the archive to create.”

Absolute pathnames

Many versions of tar have difficulties with absolute pathnames. If you back up a directory
/usr/foo, they will only be able to restore it to exactly this directory. If the directory is
/usr/bin, and you’re trying to restore programs like sh, this could give you serious problems.
Some versions of tar have an option to ignore the leading /, and others, such as GNU tar,
ignore it unless you tell them otherwise.

Symbolic links

Many versions of tar will only back up a symbolic link, not the file or directory to which it
points. This can be very embarrassing if you send somebody a tape with what should be a
complete software package, and it arrives with only a single symbolic link.

Tape block size

Many DDS (DAT) drives work better with high blocking factors, such as 65536 bytes per
block (128 “tape blocks”). You can do this with the option b (block size):

$ tar cvfb /dev/tape 128 foo-dir

Unfortunately, this can cause problems too. Some DDS drives cannot read tapes with block
sizes of more than 32768 bytes, and some versions of tar, such as SGI IRIS 5.x, cannot handle
tapes blocked larger than 20 tape blocks (10240 bytes). This is a show-stopper if you have a
tape which is really blocked at more than this size: you just won’t be able to read it directly.
You can solve this problem by installing GNU tar or piping the archive through dd:

$ dd if=/dev/rmt/ctape0 ibs=128b obs=2b | tar xvf -

File names

Most versions of tar perform filename matching based on the exact text as it appears on the
tape. If you want to extract specific files, you must use the names by which they are known in
the archive. For example, some versions of tar may end up writing absolute names with two
leading slashes (like //usr/bin/sh, for example). This doesn’t worry the operating system,
which treats multiple leading slashes the same as a single leading slash, but if you want to

5 February 2005 02:09

Chapter 2: Unpacking the goodies 17

extract this file, you need to write:

$ tar x //usr/bin/sh

File name sorting

A tar archive listing with tar tv deliberately looks very much like a listing done with ls -l.
There is one big difference, however: ls -l sorts the file names by name before displaying
them, whereas tar, being a serial archive program, displays the names in the order in which
they occur in the archive. The list may look somewhat sorted, depending on how the archive
was created, but you can’t rely on it. This means that if you are looking for a file name in an
archive, you should not be misled if it’s not where you expect to find it: use tools like grep or
sort to be sure.

tar: dir - cannot create

With System V systems, you may see things like:

$ tar xvf shellutils-1.9.4.tar
tar: shellutils-1.9.4/ - cannot create
x shellutils-1.9.4/COPYING, 17982 bytes, 36 tape blocks
x shellutils-1.9.4/COPYING.LIB, 25263 bytes, 50 tape blocks
tar: shellutils-1.9.4/lib/ - cannot create
x shellutils-1.9.4/lib/Makefile.in, 2868 bytes, 6 tape blocks
x shellutils-1.9.4/lib/getopt.h, 4412 bytes, 9 tape blocks

This “bug” has been around so long that you might suspect that it is an insider joke. In fact, it
is a benign compatibility problem. The POSIX.2 standard tar format allows archives to con-
tain both directory and file names, although the directory names are not really necessary:
assuming it has permission, tar creates all directories necessary to extract a file. The only use
of the directory names is to specify the modification time and permissions of the directory.
Older versions of tar, including System V tar, do not include the directory names in the ar-
chive, and don’t understand them when they find them. In this example, we have extracted a
POSIX.2 tar archive on a System V system, and it doesn’t understand (or need) the directory
information. The only effect is that the directories will not have the correct modification time-
stamps and possibly not the correct permissions.

Losing access to your files

Some versions of tar, notably System V versions, have another trick in store: they restore the
original owner of the files, even if that owner does not exist. That way you can lose access to
your files completely if they happen to have permissions like rw-------. You can avoid this
by using the o flag (restore ownership to current user).

It would be nice to be able to say “make a rule of always using the o flag”. Unfortunately,
other versions of tar define this flag differently — check your man pages for details.

5 February 2005 02:09

18

Multivolume archives

tar can also handle multi-volume archives, in other words archives that go over more than one
tape. The methods used are not completely portable: one version of tar may not be able to
read multivolume archives written by a different version. Some versions of tar just stop writ-
ing data at the end of one tape and continue where they left off at the beginning of the next
reel, whereas others write header information on the second tape to indicate that it is a contin-
uation volume. If possible, you should avoid writing multivolume archives unless you are
sure that the destination system can read them. If you run into problems with multivolume ar-
chives you can’t read, you might save the day with something like:

$ (dd if=$TAPE
++ echo 1>&2 Change tapes and press RET
++ read confirmation the name of the variable isn’t important
++ dd if=$TAPE
++ echo 1>&2 Change tapes and press RET
++ read confirmation
++ dd if=$TAPE) | tar xvf -

This uses dd to copy the first tape to stdout, then prints a message and waits for you to press
the enter key, copies a second tape, prompts and waits again, and then copies a third tape.
Since all the commands are in parentheses, the standard output of all three dd commands is
piped into the tar waiting outside. The echo commands need to go to stderr (that’s the 1>&2)
to get displayed on the terminal—otherwise they would be piped into the tar, which would
not appreciate it.

This only works if the version of tar you use doesn’t put any header information (like reel
number and a repeat of the file header) at the beginning of the subsequent reels. If it does, and
you can’t find a compatible tar to extract it again, the following method may help. Assuming
a user of an SCO system has given you a large program foo spread over 3 diskettes, each of
which contains header information that your tar doesn’t understand, you might enter

$ tar x foo extract first part from first floppy
$ mv foo foo.0 save the first part
$ tar x foo extract second part from second floppy
$ mv foo foo.1 save the second part
$ tar x foo extract third part from third floppy
$ mv foo foo.2 save the third part
$ cat foo.* >foo concatenate them
$ rm foo.* and remove the intermediate files

Extracting an archive with tar

Using tar to extract a file is normally pretty straightforward. You can cause a lot of confusion,
however, if you extract into the wrong directory and it already contains other files you want to
keep. Most archives contain the contents of a single directory as viewed from the parent
directory — in other words, the name of the directory is the first part of all file names. All
GNU software follows this rule:

5 February 2005 02:09

Chapter 2: Unpacking the goodies 19

$ tar tvf groff-1.09.tar
drwxr-xr-x jjc/staff 0 Feb 19 14:15 1994 groff-1.09/
drwxr-xr-x jjc/staff 0 Feb 19 14:13 1994 groff-1.09/include/
-rw-r--r-- jjc/staff 607 Sep 21 12:03 1992 groff-1.09/include/Makefile.sub
-rw-r--r-- jjc/staff 1157 Oct 30 07:38 1993 groff-1.09/include/assert.h
-rw-r--r-- jjc/staff 1377 Aug 3 12:34 1992 groff-1.09/include/cmap.h
-rw-r--r-- jjc/staff 1769 Aug 10 15:48 1992 groff-1.09/include/cset.h

Others, however, show the files from the viewpoint of the directory itself—the directory name
is missing in the archive:

$ tar tvf blaster.tar
-rw-r--r-- 400/1 5666 Feb 14 01:44 1993 README
-rw-r--r-- 400/1 3638 Feb 14 01:44 1993 INSTALL
-r--r--r-- 400/1 2117 Feb 14 01:44 1993 LICENSE
-rw-r--r-- 400/1 2420 Feb 14 15:17 1993 Makefile
-rw-r--r-- 400/1 3408 Feb 14 01:44 1993 sb_asm.s
-rw------- 400/1 10247 Feb 14 01:44 1993 stream.c
-rw-r--r-- 400/1 1722 Feb 14 04:10 1993 apps/Makefile

If you have an archive like the first example, you want to be in the parent directory when you
extract the archive; in the second case you need to first create the directory and then cd to it.
If you extract the second archive while in the parent directory, you will face a lot of cleaning
up. In addition, there is a good chance that files with names like README, INSTALL and
LICENSE may already be present in that directory, and extracting this archive would over-
write them. There are a couple of ways to avoid these problems:

• Always look at the archive contents with tar t before extracting it. Once you have looked
at the archive contents, you can change to the correct directory into which to extract it.
In the case of groff above, you might choose a directory name like ˜/mysources*. In the
case of blaster, you could create a directory ˜/mysources/blaster and extract into that
directory.

• Alternatively, you can always create a subdirectory and extract there, and then rename
the directory. In the first example, you might create a directory ˜/mysources/temp. After
extraction, you might find that the files were in a directory ˜/mysources/temp/groff-1.09,
so you could move them with

$ mv groff-1.09 ..

If they extract directly into temp, you can rename the directory:

$ cd ..
$ mv temp groff-1.09

This method may seem easier, but in fact there are a couple of problems with it:

• You need to choose a directory name that doesn’t clash with the real name. That’s
why we used the name temp in this example: otherwise it won’t be possible to
rename the directory in the first example, since you would be trying to overwrite the
directory with one of its own subdirectories.

* A number of shells use the shorthand notation ˜/ to refer to your home directory.

5 February 2005 02:09

20

• Not all flavours of UNIX allow you to move directories.

The command to extract is almost identical to the command to list the archive — a clear case
for a shell with command line editing:

$ tar tvf groff-1.09.tar list the archive
$ tar xvf groff-1.09.tar extract the archive

Frequently your tar archive will be compressed in some way. There are methods for extract-
ing files directly from compressed archives. We’ll examine these when we look at compres-
sion programs on page .

Compression programs
If the archive is compressed, you will need to uncompress it before you can extract files from
it. UNIX systems almost invariably use one of three compression formats:

• compressed files are created with the compress program and extracted with uncompress.
They can be up to 70% smaller than the original file. The zcat program will uncompress
a compressed file to the standard output.

• gzipped files are created by gzip and extracted by gunzip. They can be up to 90%
smaller than the original file. gunzip will also uncompress compressed or packed files.

• packed files are obsolete, though you still occasionally see packed man pages. They are
created by the pack program and uncompressed by the unpack program. The pcat pro-
gram will uncompress a packed file to the standard output.

Each of these programs is installed with three different names. The name determines the
behavior. For example, gzip is also known as gunzip and zcat:

$ ls -li /opt/bin/gzip /opt/bin/gunzip /opt/bin/zcat
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gunzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/gzip
13982 -rwxr-xr-x 3 grog wheel 77824 Nov 5 1993 /opt/bin/zcat

The -i option to ls tells it to list the inode number, which uniquely identifies the file. In this
case, you will see that all three names are linked to the same file (and that the link count field
is 3 as a result). You will notice that gzip has also been installed under then name zcat,
replacing the name used by compress. This is not a problem, since gzcat can do everything
that zcat can do, but it can lead to confusion if you rely on it and one day try to extract a
gzipped file with the real zcat.

Encoded files
Most archive programs and all compression programs produce output containing non-print-
able characters. This can be a problem if you want to transfer the archive via electronic mail,
which cannot handle all binary combinations. To solve this problem, the files can be encoded:
they are transformed into a representation that contains only printable characters. This has the
disadvantage that it makes the file significantly larger, so it is used only when absolutely

5 February 2005 02:09

Chapter 2: Unpacking the goodies 21

necessary. Two programs are in common use:

• uuencode is by far the most common format. The companion program uudecode will
extract from standard input.

• btoa format is used to some extent in Europe. It does not expand the file as much as
uuencode (25% compared to 33% with uuencode), and is more resistant to errors. You
decode the file with the atob program.

Split archives
Many ftp sites split large archives into equal-sized chunks, typically between 256 kB and 1.44
MB (a floppy disk image). It’s trivial to combine them back to the original archive: cat will
do just that. For example, if you have a set of files base09.000 through base09.013 represent-
ing a gzipped tar archive, you can combine them with:

$ cat base09.* > base09.tar.gz

This will, of course, require twice the amount of storage, and it takes time. It’s easier to
extract them directly:

$ cat base09.* | gunzip | tar xvf -
drwxr-xr-x root/wheel 0 Aug 23 06:22 1993 ./sbin/
-r-xr-xr-x bin/bin 106496 Aug 23 06:21 1993 ./sbin/chown
-r-xr-xr-x bin/bin 53248 Aug 23 06:21 1993 ./sbin/mount_mfs
... etc

cat pipes all archives in alphabetical file name order to gunzip. gunzip uncompresses it and
pipes the uncompressed data to tar, which extracts the files.

Extracting a linked file

tar is clever enough to notice when it is backing up multiple copies of a file under different
names, in other words so-called hard links. When backing up, the first time it encounters a
file, it copies it to the archive, but if it encounters it again under another name, it simply cre-
ates an entry pointing to the first file. This saves space, but if you just try to extract the second
file, tar will fail: in order to extract the second name, you also need to extract the file under
the first name that tar found. Most versions of tar will tell you what the name was, but if you
are creating archives, it helps to back up the most-used name first.

What’s that archive?
All the preceding discussion assumes that you know the format of the archive. The fun begins
when you don’t. How do you extract it?

Your primary indication of the nature of the file is its filename. When archives are created,
compressed and encoded, they usually receive a file name suffix to indicate the nature of the
file. You may also have come across the term extension, which comes from the MS-DOS
world. These suffixes accumulate as various steps proceed. A distribution of gcc might come
in a file called gcc-2.5.8.tar.gz.uue. This name gives you the following information:

5 February 2005 02:09

22

• The name of the package: gcc.

• The revision level: -2.5.8. You would expect the name of the root directory for this pack-
age to be gcc-2.5.8.

• The archive format: .tar. Since this is a GNU package, you can expect the name of the
uncompressed archive to be gcc-2.5.8.tar.

• The compression format: .gz (gzip format). The name of the compressed archive would
be gcc-2.5.8.tar.gz.

• The encoding format: .uue (encoded with uuencode).

Some operating systems, notably System V.3 and Linux, still provide file systems which
restrict file names to 14 characters. This can lead to several problems.* Archives distributed
for these systems frequently use variants on these names designed to make them shorter;
gcc-2.5.8.tzue might be an alternate name for the same package.

The following table gives you an overview of archive file suffixes you might encounter. We’ll
look at source file suffixes in Chapter 20, Compilers, page

Table 2−1: Common file name suffixes

Name Format
suffix

Alternate patch reject file name.
˜ emacs backup files, also used by some versions of patch.
,v RCS file. Created by ci, extracted by co.
.a ar format. Created by and extracted with ar.
.arc Created by and extracted with arc.
.arj DOS arj format
.cpio Created by and extracted with cpio.
.diff Difference file, created by diff, can be applied by patch.
.gif Graphics Interchange Format
.gz gzip format. Created by gzip, extracted with gunzip.
.hqx HQX (Apple Macintosh)
.jpg JPEG (graphics format)
.lzh LHa, LHarc, Larc
.orig Original file after processing by patch.
.rej patch reject file.
.shar Shell archive: created by shar, extracted with any Bourne-compatible shell.
.sit Stuff-It (Apple Macintosh)
.tar tar format. Created by and extracted with tar.
.uu uuencoded file. Created by uuencode, decoded with uudecode.

* If you have one of these systems, and you have a choice of file systems, you can save yourself a lot of
trouble by installing one that allows long file names.

5 February 2005 02:09

Chapter 2: Unpacking the goodies 23

Table 2−1: Common file name suffixes (continued)

Name Format
suffix

.uue Alternative for .uu

.Z Compressed with compress, uncompressed with uncompress, zcat or gunzip.

.z Tw o different formats: either pack format, compressed by pack, extracted with
pcat, or old gzip format, compressed by gzip, extracted with gunzip.

.zip Zip (either PKZip or Zip/Unzip)

.zoo Zoo

Identifying archives
Occasionally you’ll get an archive whose name gives you no indication of the format. Under
these circumstances, finding the kind of archive can be a matter of trial and error, particularly
if it is compressed. Here are a couple of ideas that might help:

file

The UNIX file command recognizes a lot of standard file types and prints a brief description
of the format. Unfortunately, the file really needs to be a file: file performs some file system
checks, so it can’t read from standard input. For example,

$ file *
0install.txt: English text
base09.000: gzip compressed data - deflate method , original
file name , last modified: Mon Aug 23 07:53:21 1993 , max compression os:
Unix
base09.001: data
...more of same
base09.011: DOS executable (COM)
man-1.0.cpio: cpio archive
tcl7.3.tar.gz: empty
tex: directory
tk3.6.tar: POSIX tar archive

The information for base09.000 was one output line that wrapped around onto 3 output lines.

Most files have certain special values, so-called magic numbers, in specific locations in their
headers. file uses a file, usually /etc/magic, which describes these formats. Occasionally it
makes a mistake—we can be reasonably sure that the file base09.011 is not a DOS
executable, but it has the right number in the right place, and thus fools file.

This version of file (from BSD/OS) recognizes base09.000—and none of the following pieces
of the archive — as a gzip archive file, and even extracts a lot of information. Not all versions
of file do this. Frequently, it just tells you that the archive is data — in this case, the first
assumption should be that the archive is compressed in a format that your version of file
doesn’t recognize. If the file is packed, compressed or gzipped, gzip expands it, and otherwise
it prints an error message, so the next step might look something like:

5 February 2005 02:09

24

$ gunzip < mystery > /tmp/junk
$ aha! it didn’t complain
$ file /tmp/junk
/tmp/junk: POSIX tar archive

In this case, we have established that the file mystery is, in fact, a compressed tar archive,
though we don’t know what kind of compression, since gzip doesn’t tell.

If file tells you that the file is ASCII or English text, then you can safely look at it with more
or less:

$ more strange-file
Newsgroups: comp.sources.unix
From: clewis@ferret.ocunix.on.ca (Chris Lewis)
Subject: v26i014: psroff 3.0, Patch09
Sender: unix-sources-moderator@pa.dec.com
Approved: vixie@pa.dec.com

Submitted-By: clewis@ferret.ocunix.on.ca (Chris Lewis)
Posting-Number: Volume 26, Issue 14
Archive-Name: psroff3.0/patch9

This is official patch 09 for Psroff 3.0.
... intervening lines skipped

clewis@ferret.ocunix.on.ca (Chris Lewis)

Patchwrapped: 920128230528

Index: ./lib/lj3.fonts
*** /tmp/PATCHold/./lib/lj3.fonts Tue Jan 28 23:03:45 1992
--- ./lib/lj3.fonts Tue Jan 28 23:03:46 1992

This is a plain text patch file: you can pass it straight through the patch program, since patch
doesn’t worry about junk at the beginning or the end of the file. We’ll look at patch in depth
in Chapter 3, Care and feeding of source trees, page 30.

Newsgroups: comp.sources.unix From: lm@Sunburn.Stanford.EDU (Larry McVoy)
Subject: v26i020: perfmon - interface to rstatd(8)
Sender: unix-sources-moderator@pa.dec.com
Approved: vixie@pa.dec.com ... more stuff omitted
#! /bin/sh
This is a shell archive. Remove anything before this line,
then unpack it by saving it into a file and typing "sh file".

As the text tells you, this is a shell archive. To extract it, you can remove all text up to the line
starting with #!/bin/sh and extract it with the Bourne shell, or pass it through unshar as it is.

begin 666 magic.gz
M’XL("‘_!NRT‘‘V5A<W1E<@!-4KV.VS‘,WO,4W’(’N‘;:\9:B+3)T.*1HT*DH
M<+3$V+I(HB’*2?/V)14W=YMED-\OGW8HE0K0.#[![V/A!’4B<(M4_>1C>ZTS
MNW&$:<D5>!‘J9_(0\@:@C?SJ#SU@]I‘P7V’&4L6V=TOAF?Y‘[N%C#U\@D0B.
M!%/PGK+NV[)A\/!*KH)C3[:’,!<>"R9‘T<<KGZC3Z4K9*VUE&‘B.O"C?H&Q4
MA+,8C‘ˆ"(I2&&/((7&‘H?!’[;JX4O0?X]$Y)!\HR3\%U.FT(TE#I>#0YE$*M

5 February 2005 02:09

Chapter 2: Unpacking the goodies 25

MU$C>%#UPT>&L?WY\ZQKNUˆ_[‘_S</SˆN@1226061"15.!‘K);DF4#4RHFD7’
M2;/R8BI/=)5:U*1TMG\W>C=O0PJF]N:(U[L45\B’*NIIGPDN%..’4ˆ9+$T%8
MXA7>ZEWS"B;<\3+’%O3ˆ0‘(.%[%8)TK&<I/O6[6\!M>TPDM"U1+Y3%NXA#K!
M2ˆ8*%RR?MZKA6:NWI5L?&&UM7I1>8,(S05K<!(D+‘44<N&‘E$R;OKD%#7!-P
M<?’66PQR.R73X>E,D0U_"QFUP@YFCJ$&IVST=ˆ)2L0:-OH%(QNHF:MMI$>O8
I3#PH#VM<#H4>_]<O$)*>PYU)JPJE7>;*:>5!)4S]9O,/(PQ?IS4#‘‘!I
‘
end

This is a uuencoded file. The first line contains the word begin, the default security (which
you can’t change) and the name of the archive (magic.gz). The following lines usually have
the same length and begin with the same letter (usually M)—this is the encoded length specifi-
cation for the line. If they don’t, something has probably gone wrong in the transmission.
The last data line is usually shorter, and thus has a different first character. Finally, the archive
contains two end lines: the first is usually the single character ‘, and the second is the word
end on a line by itself.

To extract the file, first pass it through uudecode, which will create the file magic.gz, then gun-
zip it to create the file magic. Then you might need to use file to find out what it is.

$ uudecode < magic.uue
$ gunzip magic.gz
$ file magic
magic: English text

Don’t confuse uuencode format with this:

xbtoa5 78 puzzle.gz Begin
+,ˆC1(V%L;!!?e@F*(u6!)69ODSn.:h/s&KF-$KGlWA8mP,0BTe$‘Y<$qSODDdUZO:_0iqn&P/S%8H
[AX_&!0:k0$Nˆ5WjWlkG?U*XLRJ6"1SˆE;mJ.k’Ea#$EL9q3*Bb.c9J@t/K/’N>62BM=7Ujbp7$YHN
,m"%IZ93t15j%OV"_S#NMI4;GC_N’=%+k5LX,A*uli>IBE@i0T4cP/A#coB""‘a]![8jgS1L=p6Kit
X9EU5N%+(>-N=YU4(aeoGoFH9SqM6#c1(r;;K<’aBE/aZRX/ˆ:.cbh&9[r.ˆf3bpQJQ&fW:*S_7DW9
6No0QkC7@A0?=YtSYlAc@01eeX;bF/9%&4E627AA6GR!u]3?Zhke.l4*T=U@TF9@1Gs4\jQPjbBm\H
K24N:$HKre7#7#jG"KFmeˆdjs!<<*"N
xbtoa End N 331 14b E 5c S 75b7 R b506b514

This is a btoa encoded file, probably also gzipped like the previous example. Extract it with
btoa -a and then proceed as with uuencoded files.

What’s in that archive?
Now you have discovered the format of the archive and can extract the files from it. There’s a
possibility, though, that you don’t know what the archive is good for. This is frequently the
case if you have a tape or a CD-ROM of an ftp server, and it contains some cryptic names that
suggest the files might possibly be of interest. How do you find out what the package does?

README
By convention, many authors include a file README in the main directory of the package.
README should tell you at least:

5 February 2005 02:09

26

• The name of the package, and what it is intended to do.

• The conditions under which you may use it.

For example, the README file for GNU termcap reads:

This is the GNU termcap library -- a library of C functions that enable programs
to send control strings to terminals in a way independent of the terminal type.
Most of this package is also distributed with GNU Emacs, but it is available in
this separate distribution to make it easier to install as -ltermcap.

The GNU termcap library does not place an arbitrary limit on the size of termcap
entries, unlike most other termcap libraries.

See the file INSTALL for compilation and installation instructions.

Please report any bugs in this library to bug-gnu-emacs@prep.ai.mit.edu. You
can check which version of the library you have by using the RCS ‘ident’ command
on libtermcap.a.

In some cases, however, there doesn’t seem to be any file to tell you what the package does.
Sometimes you may be lucky and find a good man page or even documentation intended to be
printed as hardcopy—see Chapter 7, Documentation for more information. In many cases,
though, you might be justified in deciding that the package is so badly documented that you
give up.

There may also be files with names like README.BSD, README.SYSV, README.X11 and
such. If present, these will usually give specific advice to people using these platforms.

INSTALL file
There may be a separate INSTALL file, or the information it should contain might be included
in the README file. It should tell you:

• A list of the platforms on which the package has been ported. This list may or may not
include your system, but either way it should give you a first inkling of the effort that lies
in store. If you’re running System V.4, for example, and it has already been ported to
your hardware platform running System V.3, then it should be easy. If it has been ported
to V.4, and you’re running V.3, this can be a completely different matter.

• A description of how to configure the package (we’ll look at this in Chapter 4, Package
configuration).

• A description of how to build the package (see Chapter 4, Package configuration and
Chapter 19, Make for more details on this subject).

It may, in addition, offer suggestions on how to port to other platforms or architectures.

5 February 2005 02:09

Chapter 2: Unpacking the goodies 27

Other files
The package may include other information files as well. By convention, the names are writ-
ten in upper case or with an initial capital letter, so that they will be stand out in a directory
listing. The GNU project software may include some or all of the following files:

• ABOUT is an alternative name used instead of README by some authors.

• COPYING and COPYING.LIB are legal texts describing the constraints under which you
may use the software.

• ChangeLog is a list of changes to the software. This name is hard-coded into the emacs
editor macros, so it’s a good chance that a file with this name will really be an emacs-
style change log.

• MANIFEST may give you a list of the files intended to be in the package.

• PROBLEMS may help you if you run into problems.

• SERVICE is supplied by the Free Software Foundation to point you to companies and
individuals who can help you if you run into trouble.

A good example of these files is the root directory of Taylor uucp:

$ gunzip </cd0/gnu/uucp/uucp-1.05.tar.gz |tar tvf -
drwxrwxr-x 269/15 0 May 6 06:10 1994 uucp-1.05/
-r--r--r-- 269/15 17976 May 6 05:23 1994 uucp-1.05/COPYING
-r--r--r-- 269/15 163997 May 6 05:24 1994 uucp-1.05/ChangeLog
ˆC$

This archive adheres to the GNU convention of including the name of the top-level directory
in the archive. When we extract the archive, tar will create a new directory uucp-1.05 and put
all the files in it. So we continue:

$ cd /porting/src the directory in which I do my porting
$ gunzip </cd0/gnu/uucp/uucp-1.05.tar.gz |tar xf -
$

After extraction, the resultant directory contains most of the “standard” files that we discussed
above:

$ cd uucp-1.05
$ ls -l
total 1724
drwxrwxr-x 7 grog wheel 1536 May 6 06:10 .
drwxrwxrwx 44 grog wheel 3584 Aug 19 14:34 ..
-r--r--r-- 1 grog wheel 17976 May 6 05:23 COPYING
-r--r--r-- 1 grog wheel 163997 May 6 05:24 ChangeLog
-r--r--r-- 1 grog wheel 499 May 6 05:24 MANIFEST
-rw-r--r-- 1 grog wheel 14452 May 6 06:09 Makefile.in
-r--r--r-- 1 grog wheel 4283 May 6 05:24 NEWS
-r--r--r-- 1 grog wheel 7744 May 6 05:24 README
-r--r--r-- 1 grog wheel 23563 May 6 05:24 TODO
-r--r--r-- 1 grog wheel 32866 May 6 05:24 chat.c

5 February 2005 02:09

28

-r--r--r-- 1 grog wheel 19032 May 6 05:24 config.h.in
-rwxrwxr-x 1 grog wheel 87203 May 6 05:27 configure
-r--r--r-- 1 grog wheel 11359 May 6 05:24 configure.in

...etc

5 February 2005 02:09

